Skip to main content

Real-Time Automatic Plankton Detection, Tracking and Classification on Raw Hologram

  • Conference paper
  • First Online:
Computational Intelligence Methods for Bioinformatics and Biostatistics (CIBB 2021)

Abstract

Digital holography is an imaging process that encodes the 3D information of objects into a single intensity image. In recent years, this technology has been used to detect and count various microscopic objects and has been applied in submersible equipment to monitor the in situ distribution of plankton. To count and classify plankton, conventional methods require a holographic reconstruction step to decode the hologram before identifying the objects. However, this iterative and time-consuming step must be performed at each frame of a video, which makes it difficult to support real-time processing. We propose a real-time object detection based approach that simultaneously performs the detection, classification and counting of all plankton within videos of raw holograms. Experiments show that our pipeline based on YOLOv5 and SORT is fast (44 FPS) and can accurately detect and identify the plankton among 13 classes (97.6% mAP@0.5, 92% MOTA). Our method can be implemented to detect and count other microscopic objects in raw holograms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.kaggle.com/c/datasciencebowl/.

  2. 2.

    https://github.com/ultralytics/yolov5.

References

  1. Bernardin, K., Stiefelhagen, R.: Evaluating multiple object tracking performance: the CLEAR MOT metrics. Eurasip J. Image Video Process. 2008 (2008). https://doi.org/10.1155/2008/246309

  2. Bewley, A., Ge, Z., Ott, L., Ramos, F., Upcroft, B.: Simple online and realtime tracking. In: Proceedings - International Conference on Image Processing, ICIP 2016-August, pp. 3464–3468 (2016). https://doi.org/10.1109/ICIP.2016.7533003

  3. Bochkovskiy, A., Wang, C.Y., Liao, H.Y.M.: Yolov4: optimal speed and accuracy of object detection. ArXiv:abs/2004.10934 (2020)

  4. Lam, H.S., Tsang, P.W.: Invariant classification of holograms of deformable objects based on deep learning. In: IEEE International Symposium on Industrial Electronics 2019-June, pp. 2392–2396 (2019). https://doi.org/10.1109/ISIE.2019.8781149

  5. Latychevskaia, T.: Iterative phase retrieval in coherent diffractive imaging: practical issues. Appl. Opt. 57(25), 7187 (2018). https://doi.org/10.1364/ao.57.007187

    Article  PubMed  Google Scholar 

  6. Latychevskaia, T., Fink, H.W.: Practical algorithms for simulation and reconstruction of digital in-line holograms. Appl. Opt. 54(9), 2424 (2015)

    Article  PubMed  Google Scholar 

  7. Lee, S.J., Yoon, G.Y., Go, T.: Deep learning-based accurate and rapid tracking of 3D positional information of microparticles using digital holographic microscopy. Exper. Fluids 60(11) (2019). https://doi.org/10.1007/s00348-019-2818-y

  8. Liu, X., Liu, X., Zhang, H., Fan, Y., Meng, H.: Research progress of digital holography in deep-sea in situ detection. Seventh Symposium on Novel Photoelectronic Detection Technology and Applications, vol. 11763, pp. 1760–1766 (2021)

    Google Scholar 

  9. Memmolo, P., et al.: On the holographic 3d tracking of in vitro cells characterized by a highly-morphological change. Opt. Express 20(27), 28485–28493 (2012). https://doi.org/10.1364/OE.20.028485

  10. Memmolo, P., et al.: Recent advances in holographic 3D particle tracking. Adv. Opt. Photon. 7(4), 713 (2015). https://doi.org/10.1364/aop.7.000713

  11. Mudanyali, O., Tseng, D., Oh, C.: Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications. Lab. Chip 10(11), 1417–1428 (2010). https://doi.org/10.1039/c000453g.Compact

  12. Padilla, R., Passos, W.L., Dias, T.L., Netto, S.L., Da Silva, E.A.: A comparative analysis of object detection metrics with a companion open-source toolkit. Electronics (Switzerland) 10(3), 1–28 (2021)

    Google Scholar 

  13. Persson, J., Mlder, A., Sven-Göran Pettersson, P., Alm, K.: Cell motility studies using digital holographic microscopy. Microsc. Sci Technol. Appl. Edu 4 (2010)

    Google Scholar 

  14. Picart, P., Montresor, S.: Digital Holography. Elsevier Inc. (2019). https://doi.org/10.1016/B978-0-12-815467-0.00005-0

  15. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 2016-Decem, pp. 779–788 (2016)

    Google Scholar 

  16. Rivenson, Y., Zhang, Y., Günaydin, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks. Light Sci. Appl. 7(2), 17141 (2018)

    Google Scholar 

  17. Scholz, G., et al.: Continuous live-cell culture imaging and single-cell tracking by computational lensfree LED microscopy. Sensors (Switzerland) 19(5), 1–13 (2019). https://doi.org/10.3390/s19051234

  18. Shimobaba, T., Kakue, T., Ito, T.: Convolutional Neural Network-Based Regression for Depth Prediction in Digital Holography. In: IEEE International Symposium on Industrial Electronics 2018-June, pp. 1323–1326 (2018)

    Google Scholar 

  19. Trujillo, C., Garcia-Sucerquia, J.: Automatic detection and counting of phase objects in raw holograms of digital holographic microscopy via deep learning. Opt. Lasers Eng. 120, 13–20 (2019)

    Google Scholar 

  20. Wu, Y., et al.: Label-free bioaerosol sensing using mobile microscopy and deep learning. ACS Photon. 5(11), 4617–4627 (2018). https://doi.org/10.1021/acsphotonics.8b01109

  21. Wu, Y., Rivenson, Y., Zhang, Y., Günaydin, H., Lin, X., Ozcan, A.: Extended depth - of - field in holographic image reconstruction using deep learning based auto - focusing and phase - recovery. Optica 5, 704–710 (2018)

    Article  Google Scholar 

  22. Zhang, Y., Lu, Y., Wang, H., Chen, P., Liang, R.: Automatic classification of marine plankton with digital holography using convolutional neural network. Opt. Laser Technol. 139(January), 106979 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Romane Scherrer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Scherrer, R. et al. (2022). Real-Time Automatic Plankton Detection, Tracking and Classification on Raw Hologram. In: Chicco, D., et al. Computational Intelligence Methods for Bioinformatics and Biostatistics. CIBB 2021. Lecture Notes in Computer Science(), vol 13483. Springer, Cham. https://doi.org/10.1007/978-3-031-20837-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20837-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20836-2

  • Online ISBN: 978-3-031-20837-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics