Skip to main content

Powder Bed Fusion

  • Chapter
  • First Online:
Springer Handbook of Additive Manufacturing

Part of the book series: Springer Handbooks ((SHB))

Abstract

This chapter covers the different types of metal powder bed fusion processes, specifically expanding on electron beam powder bed fusion (EB-PBF) and laser powder bed fusion (LPBF), and their advantages. The section also covers the starting powder material characterization and the resultant part characterization, which includes topics such as flowability, porosity, and post-processing techniques. This includes a discussion on the powder production methods, available characterization techniques for both powder and part, as well as their interpretation as it relates to part performance. The section discusses relevant examples of how this process is used in the aerospace, medical, and energy sectors to produce complex, high-value parts such as heat exchangers whose performance can be increased with individualized design and seamless one-step manufacturing. A few challenges unique to powder bed fusion processes are also discussed, including limitations in powder recycling, relatively long production times, and the need for post-processing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 399.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We have used the abbreviations, LPBF and EB-PBF, for the sake of familiarity of these terms with users.

References

  1. King, W.E., et al.: Laser powder bed fusion additive manufacturing of metals; physics, computational, and materials challenges. Appl. Phys. Rev. 2(4), 041304 (2015). https://doi.org/10.1063/1.4937809. http://aip.scitation.org/doi/10.1063/1.4937809. ISSN: 1931-9401

    Article  Google Scholar 

  2. Frazier, W.E.: Metal additive manufacturing: a review. J. Mater. Eng. Perform. 23(6), 1917–1928 (2014). https://doi.org/10.1007/s11665-014-0958-z. ISSN: 1544-1024

    Article  Google Scholar 

  3. Mavroidis, C., et al.: Fabrication of non-assembly mechanisms and robotic systems using rapid prototyping. J. Mech. Des. (1990). 123(4), 516–524 (2001) ISSN: 1050-0472

    Article  Google Scholar 

  4. Vafadar, A., et al.: Advances in metal additive manufacturing: a review of common processes, industrial applications, and current challenges. Appl. Sci. 11(3), 1213 (2021)

    Article  Google Scholar 

  5. Gibson, I., Rosen, D.W., Stucker, B.: Powder bed fusion processes. In: Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing, pp. 120–159. Springer US, Boston (2010). https://doi.org/10.1007/978-1-4419-1120-9_5. ISBN: 978-1-4419-1120-9

    Chapter  Google Scholar 

  6. Wirth, F., et al.: Influence of the Inert Gas Flow on the Laser Powder Bed Fusion (LPBF) Process, pp. 192–204. Springer International Publishing (2021). https://doi.org/10.1007/978-3-030-54334-1. ISBN: 9783030543341

    Book  Google Scholar 

  7. Körner, C.: Additive manufacturing of metallic components by selective electron beam melting – a review. Int. Mater. Rev. 61(5), 361–377 (2016). https://doi.org/10.1080/09506608.2016.1176289. ISSN: 17432804

    Article  Google Scholar 

  8. Gong, X., Anderson, T., Chou, K.: Review on powder-based electron beam additive manufacturing technology. Manuf. Rev. 1 (2014). https://doi.org/10.1051/mfreview/2014001. ISSN: 22654224

  9. Ming, T., Chris Pistorius, P., Beuth, J.L.: Prediction of lack-of-fusion porosity for powder bed fusion. Addit. Manuf. 14, 39–48 (2017). https://doi.org/10.1016/j.addma.2016.12.001. https://www.sciencedirect.com/science/article/pii/S2214860416300471. ISSN: 2214-8604

    Article  Google Scholar 

  10. Gordon, J.V., et al.: Defect structure process maps for laser powder bed fusion additive manufacturing. Addit. Manuf. 36, 101552 (2020). https://doi.org/10.1016/j.addma.2020.101552. http://www.sciencedirect.com/science/article/pii/S2214860420309246. ISSN: 2214-8604

    Article  Google Scholar 

  11. Beuth, J., et al.: Process mapping for qualification across multiple direct metal additive manufacturing processes. In: 24th International SFF Symposium – An Additive Manufacturing Conference, SFF 2013, pp. 655–665. https://www.scopus.com/inward/record.uri?eid=2-s2.0-84898470851&partnerID=40&md5=f006d5df1fa420ac078b7619a54b7f5f (2013)

  12. Zäh, M.F., et al.: Determination of process parameters for electron beam sintering (EBS). In: COMSOL Conference 2008, pp. 12–18 (2008)

    Google Scholar 

  13. Kim, J., et al.: Calibration of laser penetration depth and absorptivity in finite element method based modeling of powder bed fusion melt pools. Metals and Materials International. 26(6), 891–902 (2020). https://doi.org/10.1007/s12540-019-00599-3. ISSN: 20054149

    Article  Google Scholar 

  14. Kumar, S.: Additive Manufacturing Processes, pp. 1–205 (2020). https://doi.org/10.1007/978-3-030-45089-2. ISBN: 9783030450892

    Book  Google Scholar 

  15. Caiazzo, F., Alfieri, V., Casalino, G.: On the relevance of volumetric energy density in the investigation of inconel 718 laser powder bed fusion. Materials. 13(3) (2020). https://doi.org/10.3390/ma13030538. ISSN: 19961944

  16. Brown, C.U., et al.: The effects of laser powder bed fusion process parameters on material hardness and density for nickel alloy 625. NIST Advanced Manufacturing Series, pp. 100–119. https://doi.org/10.6028/NIST.AMS.100-19 (2018)

  17. Kahlert, M., et al.: Influence of microstructure and defects on mechanical properties of AISI H13 manufactured by electron beam powder bed fusion. J. Mater. Eng. Perform. 30(9), 6895–6904 (2021). https://doi.org/10.1007/s11665-021-06059-7. ISSN: 15441024

    Article  Google Scholar 

  18. Mohr, G., Altenburg, S.J., Hilgenberg, K.: Effects of inter layer time and build height on resulting properties of 316L stainless steel processed by laser powder bed fusion. Addit. Manuf. 32(July 2019), 101080 (2020). https://doi.org/10.1016/j.addma.2020.101080. ISSN: 22148604

    Article  Google Scholar 

  19. Zachary C. Cordero, et al.: Powder bed charging during electron-beam additive manufacturing. Acta Mater. 124, 437–445 (2017). https://doi.org/10.1016/j.actamat.2016.11.012. ISSN:13596454

    Article  Google Scholar 

  20. Wysocki, B., et al.: Laser and electron beam additive manufacturing methods of fabricating titanium bone implants. Appl. Sci. (Switzerland). 7(7), 1–20 (2017). https://doi.org/10.3390/app7070657. ISSN: 20763417

    Article  Google Scholar 

  21. Sigl, M., Lutzmann, S., Zaeh, M.F.: Transient physical effects in electron beam sintering. In: 17th Solid Freeform Fabrication Symposium, SFF 2006, pp. 464–477 (2006)

    Google Scholar 

  22. German, R.M.: Powder Metallurgy Science. Metal Powder Industry (1994) ISBN: 978-1878954428

    Google Scholar 

  23. Vock, S., et al.: Powders for Powder Bed Fusion: A Review. Progress Addit. Manuf. 4, 383–397 (2019). https://doi.org/10.1007/s40964-019-00078-6

    Article  Google Scholar 

  24. Iams, A.D., et al.: Influence of particle size on powder rheology and effects on mass flow during directed energy deposition additive manufacturing. Powder Technol. 396, 316–326 (2022). https://doi.org/10.1016/j.powtec.2021.10.059

    Article  Google Scholar 

  25. Qian, M.: Metal powder for additive manufacturing. JOM. 67(3), 536–537 (2015). https://doi.org/10.1007/s11837-015-1321-z. http://link.springer.com/10.1007/s11837-015-1321-z, ISSN: 1047-4838

    Article  Google Scholar 

  26. Simchi, A.: The role of particle size on the laser sintering of iron powder. Metall. Mater. Trans. B Process Metall. Mater. Process. Sci. 35(5), 937–948 (2004). https://doi.org/10.1007/s11663-004-0088-3. ISSN: 10735615

    Article  Google Scholar 

  27. Parteli, E.J.R., Pöschel, T.: Particle-based simulation of powder application in additive manufacturing. Powder Technol. 288, 96–102 (2016). https://doi.org/10.1016/j.powtec.2015.10.035. ISSN: 1873328X

    Article  Google Scholar 

  28. Boley, C.D., Khairallah, S.A., Rubenchik, A.M.: Calculation of laser absorption by metal powders in additive manufacturing. In: Additive Manufacturing Handbook: Product Development for the Defense Industry 54(9), pp. 507–517. https://doi.org/10.1201/9781315119106 (2017)

  29. Strondl, A., et al.: Characterization and control of powder properties for additive manufacturing. JOM. 67(3), 549–554 (2015). https://doi.org/10.1007/s11837-015-1304-0. ISSN: 15431851

    Article  Google Scholar 

  30. Slotwinski, J.A., Garboczi, E.J.: Metrology needs for metal additive manufacturing powders. JOM. 67(3), 538–543 (2015). https://doi.org/10.1007/s11837-014-1290-7. ISSN: 1543-1851

    Article  Google Scholar 

  31. Kappes, B., et al.: Machine learning to optimize additive manufacturing parameters for laser powder bed fusion of inconel 718. In: Proceedings of the 9th International Symposium on Superalloy 718 & Derivatives: Energy, Aerospace, and Industrial Applications. Springer International Publishing (2018). https://doi.org/10.1007/978-3-319-89480-5. http://link.springer.com/10.1007/978-3-319-89480-5. ISBN: 978-3-319-89480-5

    Chapter  Google Scholar 

  32. Slotwinski, J.A., et al.: Characterization of metal powders used for additive manufacturing. J. Res. Natl. Inst. Stand. Technol. 119, 460–493 (2014). https://doi.org/10.6028/jres.119.018. https://pubmed.ncbi.nlm.nih.gov/26601040%20, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4487284/. ISSN: 1044-677X

    Article  Google Scholar 

  33. Schade, C., Hoeganaes, G.K.N., Dunkley, J.J.: Atomization[1]. Powder Metall. 7, 58–71 (2018). https://doi.org/10.31399/asm.hb.v07.a0006084

    Article  Google Scholar 

  34. Dawes, J., Bowerman, R., Trepleton, R.: Introduction to the additive manufacturing powder metallurgy supply chain. Johnson Matthey Technol. Rev. 59(3), 243–256 (2015). https://doi.org/10.1595/205651315X688686. ISSN: 20565135

    Article  Google Scholar 

  35. Neikov, O.D., Gopienko, V.G.: Chapter 18 – Production of Titanium and Titanium Alloy Powders. In: Neikov, O.D., Naboychenko, S.S., Nikolay, A.B.T. (eds.) Handbook of Non-Ferrous Metal Powders (Second Edition) Yefimov, pp. 549–570. Elsevier, Oxford (2019). https://doi.org/10.1016/B978-0-08-100543-9.00018-X. https://www.sciencedirect.com/science/article/pii/B978008100543900018X. ISBN: 978-0-08-100543-9

    Chapter  Google Scholar 

  36. Barbis, D.P., et al.: Titanium powders from the hydride-dehydride process. Titanium Powder Metall. Sci. Technol. Appl. 2015, 101–116 (2015). https://doi.org/10.1016/B978-0-12-800054-0.00007-1

    Article  Google Scholar 

  37. Prescott, J.K., Barnum, R.A.: On Powder Flowability. October (2000)

    Google Scholar 

  38. B964. Standard Test Methods for Flow Rate of Metal Powders Using the Carney Funnel. ASTM Standard, pp. 4–6. https://doi.org/10.1520/B0964-16.2 (2016)

  39. Wu, Z., et al.: Powder Characterization for Metal Additive Manufacturing. David L. Bourell et al. (eds.) https://doi.org/10.31399/asm.hb.v24.a0006568 (2020)

  40. ASTM International F3049. Standard guide for characterizing properties of metal powders used for additive manufacturing processes. In: F3049–14, pp. 1–3. https://doi.org/10.1520/F3049-14. file:///D:/Sorted%20Papers/ASTM%20-%202014%20-%20Standard%20Guide%20for%20Characterizing%20Properties%20of%20Metal%20Powders%20Used%20for%20Additive%20Manufacturing%20Processes.pdf (2014)

  41. Spierings, A.B., et al.: Powder flowability characterisation methodology for powder-bed-based metal additive manufacturing. Progress Addit. Manuf. 1(1–2), 9–20 (2016). https://doi.org/10.1007/s40964-015-0001-4. ISSN: 2363-9512

    Article  Google Scholar 

  42. Freeman, R.: Measuring the flow properties of consolidated, conditioned and aerated powders – a comparative study using a powder rheometer and a rotational shear cell. Powder Technol. 174(1–2), 25–33 (2007). https://doi.org/10.1016/j.powtec.2006.10.016. ISSN: 00325910

    Article  Google Scholar 

  43. Granudrum. Dynamic Angle of Repose | Understanding and Improving Powders Spreadability. Visited on 08/08/2019

    Google Scholar 

  44. Zocca, A., et al.: Powder-bed stabilization for powder-based additive manufacturing. Adv. Mech. Eng. 2014, 491581 (2014). https://doi.org/10.1155/2014/491581. ISSN:16878140

    Article  Google Scholar 

  45. Muñiz-Lerma, J.A., et al.: A comprehensive approach to powder feedstock characterization for powder bed fusion additive manufacturing: a case study on AlSi7Mg. Materials. 11(12) (2018). https://doi.org/10.3390/ma11122386. ISSN: 19961944

  46. Lee, Y., Simunovic, S., Gurnon, K.A.. Quantification of Powder Spreading Process for Metal Additive. 2019. ISBN: 1800553684

    Book  Google Scholar 

  47. Oropeza, D., Roberts, R., Hart, A.J.: A modular testbed for mechanized spreading of powder layers for additive manufacturing. Review of Scientific Instruments. 92(1) (2021). https://doi.org/10.1063/5.0031191. ISSN: 10897623

  48. Snow, Z.: Metal powder production and powder size and shape distribution. Addit. Manuf. Processes. 24, 167–171 (2020). https://doi.org/10.31399/asm.hb.v24.a0006567

    Article  Google Scholar 

  49. Schade, C.: Introduction to Metal Powder Production and Characterization[1]. Samal, P., Newkirk J. (eds). https://doi.org/10.31399/asm.hb.v07.a0006086 (2015)

  50. Iacocca, R.G.: Particle Size and Size Distribution. Samal, P., Newkirk J. (eds.). https://doi.org/10.31399/asm.hb.v07.a0006096 (2015)

  51. Susan, D.: Stereological analysis of spherical particles: experimental assessment and comparison to laser diffraction. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 36(9), 2481–2492 (2005). https://doi.org/10.1007/s11661-005-0122-3. ISSN: 10735623

    Article  Google Scholar 

  52. Bo, H.: Particle image analysis. In: Samal, P., Newkirk, J. (eds.) Powder Metallurgy ASM Handbook, vol. 7, pp. 154–155 (2015). https://doi.org/10.31399/asm.hb.v07.a0006102

    Chapter  Google Scholar 

  53. Wu, Z., et al.: Study of Printability and Porosity Formation in Laser Powder Bed Fusion Built Hydride-Dehydride (HDH) Ti-6Al-4V. Addit. Manuf.. in press. 47, 102323 (2021)

    Google Scholar 

  54. Narra, S.P., et al.: Use of non-spherical hydride-dehydride (HDH) powder in powder bed fusion additive manufacturing. Addit. Manuf. 34, 101188 (2020). https://doi.org/10.1016/j.addma.2020.101188. https://www.sciencedirect.com/science/article/pii/S2214860420305601

    Article  Google Scholar 

  55. Tang, H.P., et al.: Effect of powder reuse times on additive manufacturing of Ti-6Al-4V by selective electron beam melting. JOM. 67(3), 555–563 (2015). https://doi.org/10.1007/s11837-015-1300-4. ISSN: 15431851

    Article  Google Scholar 

  56. Powell, D., et al.: Understanding powder degradation in metal additive manufacturing to allow the upcycling of recycled powders. J. Clean. Prod. 268, 122077 (2020). https://doi.org/10.1016/j.jclepro.2020.122077. ISSN: 09596526

    Article  Google Scholar 

  57. Gruber, H., et al.: Effect of powder recycling in electron beam melting on the surface chemistry of alloy 718 powder. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 50(9), 4410–4422 (2019). https://doi.org/10.1007/s11661-019-05333-7

    Article  Google Scholar 

  58. Jiang, J., Xu, X., Stringer, J.: Support structures for additive manufacturing: a review. J. Manuf. Mater. Process. 2(4), 64 (2018)

    Google Scholar 

  59. Kurzynowski, T., et al.: Effect of scanning and support strategies on relative density of SLM-ed H13 steel in relation to specimen size. Materials. 12(2) (2019). https://doi.org/10.3390/ma12020239. ISSN: 19961944

  60. Morgan, D., Agba, E., Hill, C.: Support structure development and initial results for metal powder bed fusion additive manufacturing. Procedia Manuf. 10, 819–830 (2017). https://doi.org/10.1016/j.promfg.2017.07.083. ISSN: 23519789

    Article  Google Scholar 

  61. Järvinen, J.P., et al.: Characterization of effect of support structures in laser additive manufacturing of stainless steel. Phys. Procedia. 56(C), 72–81 (2014). https://doi.org/10.1016/j.phpro.2014.08.099. ISSN: 18753892

    Article  Google Scholar 

  62. Ladani, L., Sadeghilaridjani, M.: Review of powder bed fusion additive manufacturing for metals. Metals. 11(9) (2021). https://doi.org/10.3390/met11091391. ISSN: 20754701

  63. Snyder, J.C., Thole, K.A.: Understanding laser powder bed fusion surface roughness. J. Manuf. Sci. E. T. ASME. 142(7) (2020). https://doi.org/10.1115/1.4046504. ISSN: 15288935

  64. Obilanade, D., Dordlofva, C., Törlind, P.: Surface roughness considerations in design for additive manufacturing – a literature review. Proc. Des. Soc. 1(August), 2841–2850 (2021). https://doi.org/10.1017/pds.2021.545. ISSN: 2732527X

    Article  Google Scholar 

  65. Lewandowski, J.J., Seifi, M.: Metal additive manufacturing: a review of mechanical properties. Annu. Rev. Mater. Res. 46, 151–186 (2016). https://doi.org/10.1146/annurev-matsci-070115-032024. ISSN: 15317331

    Article  Google Scholar 

  66. Kotadia, H.R., et al.: A review of laser powder bed fusion additive manufacturing of aluminium alloys: microstructure and properties. Addit. Manuf. 46, 102155 (2021)

    Google Scholar 

  67. Dryepondt, S., et al.: Microstructure and high temperature tensile properties of 316L fabricated by laser powder-bed fusion. Addit. Manuf. 37, 101723 (2021)

    Google Scholar 

  68. Gorsse, S., et al.: Additive manufacturing of metals: a brief review of the characteristic microstructures and properties of steels, Ti-6Al-4V and high-entropy alloys. Sci. Technol. Adv. Mater. 18(1), 584–610 (2017). https://doi.org/10.1080/14686996.2017.1361305. ISSN: 18785514

    Article  Google Scholar 

  69. Sames, W.J., et al.: The metallurgy and processing science of metal additive manufacturing. Int. Mater. Rev. 61(5), 315–360 (2016). https://doi.org/10.1080/09506608.2015.1116649. ISSN: 17432804

    Article  Google Scholar 

  70. Chadwick, A.F., Voorhees, P.W.: The development of grain structure during additive manufacturing. Acta Mater. 211, 116862 (2021). https://doi.org/10.1016/j.actamat.2021.116862. ISSN: 13596454

    Article  Google Scholar 

  71. Cunningham, R., et al.: Analyzing the effects of powder and post-processing on porosity and properties of electron beam melted Ti-6Al-4V. Materials Research Letters. 5(7), 516–525 (2017). https://doi.org/10.1080/21663831.2017.1340911. ISSN: 21663831

    Article  Google Scholar 

  72. Cunningham, R., et al.: Synchrotron-based X-ray microtomography characterization of the effect of processing variables on porosity formation in laser power-bed additive manufacturing of Ti-6Al-4V. JOM. 69(3), 479–484 (2017). https://doi.org/10.1007/s11837-016-2234-1. ISSN: 15431851

    Article  Google Scholar 

  73. Cunningham, R., et al.: Analyzing the effects of powder and post-processing on porosity and properties of electron beam melted Ti-6Al-4V. Materials Research Letters. 5(7), 516–525 (2017). https://doi.org/10.1080/21663831.2017.1340911. ISSN: null

    Article  Google Scholar 

  74. Cunningham, R.W.: Defect formation mechanisms in powder-bed metal additive manufacturing. 2018. https://doi.org/10.1184/R1/6715691.v1. https://kilthub.cmu.edu/articles/thesis/Defect_Formation_Mechanisms_in_Powder-Bed_Metal_Additive_Manufacturing/6715691/1

  75. Dall’Ava, L., et al.: 3D printed acetabular cups for total hip arthroplasty: a review article. Metals. 9(7), 729 (2019)

    Article  Google Scholar 

  76. Spierings, A.B., Schneider, M., Eggenberger, R.: Comparison of density measurement techniques for additive manufactured metallic parts. Rapid Prototyp. J. 17(5), 380–386 (2011). https://doi.org/10.1108/13552541111156504. ISSN: 1355-2546

    Article  Google Scholar 

  77. Blakey-Milner, B., et al.: Metal additive manufacturing in aerospace: a review. Mater. Des. 209, 110008 (2021). https://doi.org/10.1016/j.matdes.2021.110008. ISSN: 18734197

    Article  Google Scholar 

  78. Haleem, A., Javaid, M.: 3D printed medical parts with different materials using additive manufacturing. Clin. Epidemiol. Glob. Health. 8(1), 215–223 (2020). https://doi.org/10.1016/j.cegh.2019.08.002. ISSN: 22133984

    Article  Google Scholar 

  79. Caiazzo, F., et al.: Laser powder-bed fusion of Inconel 718 to manufacture turbine blades. Int. J. Adv. Manuf. Technol. 93(9), 4023–4031 (2017). https://doi.org/10.1007/s00170-017-0839-3. ISSN: 02683768 (English)

    Article  Google Scholar 

  80. Kellner, T.: World’s first plant to print jet engine nozzles in mass production. In: GE Reports. https://www.ge.com/news/reports/worlds-first-plant-to-print-jet-engine-nozzles-in (2014)

  81. Saltzman, D., et al.: Design and evaluation of an additively manufactured aircraft heat exchanger. Appl. Therm. Eng. 138(April), 254–263 (2018). https://doi.org/10.1016/j.applthermaleng.2018.04.032. ISSN: 13594311

    Article  Google Scholar 

  82. Yadroitsava, I., du Plessis, A., Yadroitsev, I.: Chapter 12 – Bone regeneration on implants of titanium alloys produced by laser powder bed fusion: A review. In: Froes, F., Qian, M., Mitsuo, B.T. (eds.) Titanium for Consumer Applications Niinomi, pp. 197–233. Elsevier (2019). https://doi.org/10.1016/B978-0-12-815820-3.00016-2. https://www.sciencedirect.com/science/article/pii/B9780128158203000162. ISBN: 978-0-12-815820-3

    Chapter  Google Scholar 

  83. Echeta, I., et al.: Review of defects in lattice structures manufactured by powder bed fusion. Int. J. Adv. Manuf. Technol. 106(5), 2649–2668 (2020)

    Article  Google Scholar 

  84. Khajavi, S.H., Partanen, J., Holmström, J.: Additive manufacturing in the spare parts supply chain. Comput. Ind. 65(1), 50–63 (2014)

    Article  Google Scholar 

  85. Niaki, M.K., Ali Torabi, S., FabioNonino: Why manufacturers adopt additive manufacturing technologies: the role of sustainability. J. Clean. Prod. 222, 381–392 (2019)

    Article  Google Scholar 

  86. Khorasani, A.M., et al.: A review of technological improvements in laser-based powder bed fusion of metal printers. Int. J. Adv. Manuf. Technol. 108(1), 191–209 (2020)

    Article  Google Scholar 

  87. Pauzon, C., et al.: Argon-helium mixtures as laser-powder bed fusion atmospheres: towards increased build rate of Ti-6Al-4V. J. Mater. Process. Technol. 279, 116555 (2020)

    Article  Google Scholar 

  88. Bhavar, V., et al.: A Review on Powder Bed Fusion Technology of Metal Additive Manufacturing. Additive Manufacturing Handbook, In (2017) p. 255

    Book  Google Scholar 

  89. Yavari, R., et al.: Part-scale thermal simulation of laser powder bed fusion using graph theory: effect of thermal history on porosity, microstructure evolution, and recoater crash. Mater. Des. 204, 109685 (2021)

    Article  Google Scholar 

  90. Anderson, I.E., White, E.M.H., Dehoff, R.: Feedstock powder processing research needs for additive manufacturing development. Curr. Opin. Solid State Mater. Sci. 22(1), 8–15 (2018)

    Article  Google Scholar 

  91. Pollock, T.M., Clarke, A.J., Babu, S.S.: Design and tailoring of alloys for additive manufacturing. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 51(12), 6000–6019 (2020). https://doi.org/10.1007/s11661-020-06009-3. ISSN: 10735623

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Srujana Rao Yarasi or Anthony D. Rollett .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yarasi, S.R., Kitahara, A.R., Holm, E.A., Rollett, A.D. (2023). Powder Bed Fusion. In: Pei, E., et al. Springer Handbook of Additive Manufacturing. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-031-20752-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20752-5_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20751-8

  • Online ISBN: 978-3-031-20752-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics