Skip to main content

Gait Emotion Recognition Using a Bi-modal Deep Neural Network

  • Conference paper
  • First Online:
Advances in Visual Computing (ISVC 2022)

Abstract

Gait Emotion Recognition is an emerging research domain that focuses on the automatic detection of emotions from a person’s manner of walking. Deep learning-based methodologies have been proven highly effective for computer vision tasks. This paper provides a powerful deep-learning architecture for emotion recognition from gait by introducing the fusion of domain-specific discriminative features with latent deep features. The proposed Bi-Modal Deep Neural Network (BMDNN) combines salient features extracted from a deep neural network with highly-discriminating handcrafted features. The proposed architecture outperforms state-of-the-art methods in all emotional classes on the Edinburgh Locomotion MoCap Dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmed, F., Paul, P.P., Gavrilova, M.L.: DTW-based kernel and rank-level fusion for 3D gait recognition using Kinect. Vis. Comput. 31(6), 915–924 (2015)

    Article  Google Scholar 

  2. Meyer, B.M., et al.: Wearables and deep learning classify fall risk from gait in multiple sclerosis. J. Biomed. Health Inform. 25(5), 1824–1831 (2020)

    Article  Google Scholar 

  3. Gavrilova, M.L., et al.: Multi-modal motion-capture-based biometric systems for emergency response and patient rehabilitation. In: Research Anthology on Rehabilitation Practices and Therapy, pp. 653–678. IGI Global, USA (2021)

    Google Scholar 

  4. Zhuang, J.R., Wu, G.Y., Lee, H.H., Tanaka, E.: Applying the Interaction of Walking-Emotion to an Assistive Device for Rehabilitation and Exercise. In: IROS, pp. 6489–6494. IEEE, China (2019)

    Google Scholar 

  5. Narayanan, V., Manoghar, B.M., Dorbala, V.S., Manocha, D., Bera, A.: ProxEmo: gait-based emotion learning and multi-view proxemic fusion for socially-aware robot navigation. In: IROS, pp. 8200–8207. IEEE, USA (2020)

    Google Scholar 

  6. Menolotto, M., Komaris, D.S., Tedesco, S., O’Flynn, B., Walsh, M.: Motion capture technology in industrial applications: a systematic review. Sensors 20(19), 5687 (2020)

    Article  Google Scholar 

  7. Bari, H., Gavrilova, M.: Artificial neural network based gait recognition using kinect sensor. IEEE Access 7(1), 162708–162722 (2019)

    Article  Google Scholar 

  8. Artacho, B., Savakis, A.: OmniPose: a multi-scale framework for multi-person pose estimation. arXiv preprint (2021)

    Google Scholar 

  9. Xu, S., et al.: emotion recognition from gait analyses: current research and future directions. arXiv preprint (2020)

    Google Scholar 

  10. Karg, M., Kühnlenz, K., Buss, M.: Recognition of affect based on gait patterns. IEEE Trans. Syst. Man Cybern. Part B 40(4), 1050–1061 (2010)

    Article  Google Scholar 

  11. Talebi, H., Hoang, W., Gavrilova, M.L.: Multi-scale foreign exchange rates ensemble for classification of trends in forex market. Proc. Comput. Sci. 29, 2065–2075 (2014)

    Article  Google Scholar 

  12. Bhattacharya, U., Mittal, T., Chandra, R., Randhavane, T., Bera, A., Manocha, D.: STEP: spatial temporal graph convolutional networks for emotion perception from gaits. In: AAAI, pp. 1342–1350. AAAI, USA (2020)

    Google Scholar 

  13. Habibie, I., Holden, D., Schwarz, J., Yearsley, J., Komura, T.: A recurrent variational autoencoder for human motion synthesis. In: 28th British Machine Vision Conference, pp. 1–11. BMVC, UK (2017)

    Google Scholar 

  14. Janssen, D., Schöllhorn, W.I., Lubienetzki, J., Fölling, K., Kokenge, H., Davids, K.: Recognition of emotions in gait patterns by means of artificial neural nets. J. Nonverbal Behav. 32(2), 79–92 (2008)

    Article  Google Scholar 

  15. Venture, G., Kadone, H., Zhang, T., Grèzes, J., Berthoz, A., Hicheur, H.: Recognizing emotions conveyed by human gait. Int. J. Soc. Robot. 6(4), 621–632 (2014)

    Article  Google Scholar 

  16. Li, S., Cui, L., Zhu, C., Li, B., Zhao, N., Zhu, T.: Emotion recognition using Kinect motion capture data of human gaits. PeerJ 4, e2364 (2016)

    Google Scholar 

  17. Zhang, Z., Song, Y., Cui, L., Liu, X., Zhu, T.: Emotion recognition based on customized smart bracelet with built-in accelerometer. PeerJ 4, e2258 (2016)

    Google Scholar 

  18. Ahmed, F., Sieu, B., Gavrilova, M.L.: Score and rank-level fusion for emotion recognition using genetic algorithm. In: ICCI*CC, pp. 46–53. IEEE, USA (2018)

    Google Scholar 

  19. Yan, S., Xiong, Y., Lin, D.: Spatial temporal graph convolutional networks for skeleton-based action recognition. In: AAAI Conference on Artificial Intelligence, USA, pp. 1–9 (2018)

    Google Scholar 

  20. Randhavane, T., Bhattacharya, U., Kapsaskis, K., Gray, K., Bera, A., Manocha, D.: Identifying emotions from walking using affective and deep features. arXiv preprint (2019)

    Google Scholar 

  21. Bhattacharya, U., et al.: Take an emotion walk: perceiving emotions from gaits using hierarchical attention pooling and affective mapping. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12355, pp. 145–163. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58607-2_9

    Chapter  Google Scholar 

  22. Laban, R.V.: The Mastery of Movement. 3rd edn. (1971)

    Google Scholar 

  23. Levy, J.A., Duke, M.P.: The use of Laban movement analysis in the study of personality, emotional state and movement style: an exploratory investigation of the veridicality of “body language’’. Individ. Differ. Res. 1(1), 39–63 (2003)

    Google Scholar 

  24. Albert, M.: Nonverbal Communication. Routledge, UK (2017)

    Google Scholar 

  25. Bhatia, Y., Bari, A.S.M.H., Hsu, G.S.J., Gavrilova, M.: Motion capture sensor-based emotion recognition using a bi-modular sequential neural network. Sensors 22(1), 403–423 (2022)

    Article  Google Scholar 

Download references

Acknowledgment

The authors acknowledge the Natural Sciences and Engineering Research Council (NSERC) Discovery Grant funding, as well as the NSERC Strategic Partnership Grant (SPG) and the Innovation for Defense Excellence and Security Network (IDEaS) for the partial funding of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yajurv Bhatia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bhatia, Y., Bari, A.S.M.H., Gavrilova, M. (2022). Gait Emotion Recognition Using a Bi-modal Deep Neural Network. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2022. Lecture Notes in Computer Science, vol 13598. Springer, Cham. https://doi.org/10.1007/978-3-031-20713-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20713-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20712-9

  • Online ISBN: 978-3-031-20713-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics