Skip to main content

Tree 3-Spanners on Generalized Prisms of Graphs

  • Conference paper
  • First Online:
Book cover LATIN 2022: Theoretical Informatics (LATIN 2022)

Abstract

Let \(t \ge 1\) be a rational constant. A t-spanner of a graph G is a spanning subgraph of G in which the distance between any pair of vertices is at most t times their distance in G. This concept was introduced by Peleg & Ullman in 1989, in the study of optimal synchronizers for the hypercube. Since then, spanners have been used in multiple applications, especially in communication networks, motion planning and distributed systems. The problem of finding a t-spanner with the minimum number of edges is \({\textsc {NP}}\)-hard for every \(t\ge 2\). Cai & Corneil, in 1995, introduced the Tree t -spanner problem (TreeS \(_t\)), that asks whether a given graph admits a tree t-spanner (a t-spanner that is a tree). They showed that TreeS \(_t\) can be solved in linear time when \(t=2\), and is \({\textsc {NP}}\)-complete when \(t \ge 4\). The case \(t = 3\) has not been settled yet, being a challenging problem. The prism of a graph G is the graph obtained by considering two copies of G, and by linking its corresponding vertices by an edge (also defined as the Cartesian product \(G\times K_2\)). Couto & Cunha (2021) showed that TreeS \(_t\) is \({\textsc {NP}}\)-complete even on this class of graphs, when \(t \ge 5\). We investigate TreeS \(_3\) on prisms of graphs, and characterize those that admit a tree 3-spanner. As a result, we obtain a linear-time algorithm for TreeS \(_3\) (and the corresponding search problem) on this class of graphs. We also study a partition of the edges of a graph related to the distance condition imposed by a t-spanner, and derive a necessary condition —checkable in polynomial time— for the existence of a tree t-spanner on an arbitrary graph. As a consequence, we show that TreeS \(_3\) can be solved in polynomial time on the class of generalized prisms of trees.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Awerbuch, B., Bar-Noy, A., Linial, N., Peleg, D.: Improved routing strategies with succinct tables. J. Algorithms 11(3), 307–341 (1990)

    MathSciNet  MATH  Google Scholar 

  2. Barnette, D., Rosenfeld, M.: Hamiltonian circuits in certain prisms. Discret. Math. 5, 389–394 (1973)

    MathSciNet  MATH  Google Scholar 

  3. Baswana, S., Sen, S.: Approximate distance oracles for unweighted graphs in expected \(O(n^2)\) time. ACM Trans. Algorithms 2(4), 557–577 (2006)

    MathSciNet  MATH  Google Scholar 

  4. Brandstädt, A., Chepoi, V., Dragan, F.: Distance approximating trees for chordal and dually chordal graphs. J. Algorithms 30(1), 166–184 (1999)

    MathSciNet  MATH  Google Scholar 

  5. Brandstädt, A., Dragan, F., Le, H., Le, V., Uehara, R.: Tree spanners for bipartite graphs and probe interval graphs. Algorithmica 47(1), 27–51 (2007)

    MathSciNet  MATH  Google Scholar 

  6. Cai, L., Corneil, D.: Tree spanners. SIAM J. Discret. Math. 8(3), 359–387 (1995)

    MathSciNet  MATH  Google Scholar 

  7. Cai, L., Keil, M.: Spanners in graphs of bounded degree. Networks 24(4), 233–249 (1994)

    MathSciNet  MATH  Google Scholar 

  8. Chudá, K., Škoviera, M.: \(L(2,1)\)-labelling of generalized prisms. Discret. Appl. Math. 160(6), 755–763 (2012)

    MathSciNet  MATH  Google Scholar 

  9. Couto, F., Cunha, L.: Hardness and efficiency on \(t\)-admissibility for graph operations. Discret. Appl. Math. 304, 342–348 (2021)

    MathSciNet  MATH  Google Scholar 

  10. Couto, F., Cunha, L., Juventude, D., Santiago, L.: Strategies for generating tree spanners: algorithms, heuristics and optimal graph classes. Inform. Process. Lett. 177, Paper No. 106265, 10 (2022)

    Google Scholar 

  11. Couto, F., Cunha, L., Posner, D.: Edge tree spanners. In: Gentile, C., Stecca, G., Ventura, P. (eds.) Graphs and Combinatorial Optimization: from Theory to Applications. ASS, vol. 5, pp. 195–207. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-63072-0_16

    Chapter  Google Scholar 

  12. Diestel, R.: Graph Theory. GTM, vol. 173. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-53622-3

    Book  MATH  Google Scholar 

  13. Dragan, F., Fomin, F., Golovach, P.: Spanners in sparse graphs. J. Comput. Syst. Sci. 77(6), 1108–1119 (2011)

    MathSciNet  MATH  Google Scholar 

  14. Dragan, F., Köhler, E.: An approximation algorithm for the tree \(t\)-spanner problem on unweighted graphs via generalized chordal graphs. Algorithmica 69(4), 884–905 (2014)

    MathSciNet  MATH  Google Scholar 

  15. Emek, Y., Peleg, D.: Approximating minimum max-stretch spanning trees on unweighted graphs. SIAM J. Comput. 38(5), 1761–1781 (2008)

    MathSciNet  MATH  Google Scholar 

  16. Fekete, S., Kremer, J.: Tree spanners in planar graphs. Discret. Appl. Math. 108(1–2), 85–103 (2001)

    MathSciNet  MATH  Google Scholar 

  17. Fomin, F., Golovach, P., van Leeuwen, E.: Spanners of bounded degree graphs. Inform. Process. Lett. 111(3), 142–144 (2011)

    MathSciNet  MATH  Google Scholar 

  18. Galbiati, G.: On finding cycle bases and fundamental cycle bases with a shortest maximal cycle. Inform. Process. Lett. 88(4), 155–159 (2003)

    MathSciNet  MATH  Google Scholar 

  19. Goddard, W., Henning, M.: A note on domination and total domination in prisms. J. Comb. Optim. 35(1), 14–20 (2018)

    MathSciNet  MATH  Google Scholar 

  20. Gómez, R., Miyazawa, F., Wakabayashi, Y.: Minimum \(t\)-spanners on subcubic graphs. In: WALCOM: Algorithms and Computation, pp. 365–380. Lecture Notes in Computer Science, Springer, Cham (2022). https://doi.org/10.1007/978-3-030-96731-4_30

  21. Imrich, W., Peterin, I.: Recognizing Cartesian products in linear time. Discret. Math. 307(3–5), 472–483 (2007)

    MathSciNet  MATH  Google Scholar 

  22. Lin, L., Lin, Y.: Optimality computation of the minimum stretch spanning tree problem. Appl. Math. Comput. 386, 125502 (2020)

    MathSciNet  MATH  Google Scholar 

  23. Madanlal, M., Venkatesan, G., Pandu Rangan, C.: Tree \(3\)-spanners on interval, permutation and regular bipartite graphs. Inform. Process. Lett. 59(2), 97–102 (1996)

    MathSciNet  MATH  Google Scholar 

  24. Álvarez Miranda, E., Sinnl, M.: Mixed-integer programming approaches for the tree \(t^*\)-spanner problem. Optim. Lett. 13(7), 1693–1709 (2019)

    MathSciNet  MATH  Google Scholar 

  25. Paulraja, P.: A characterization of Hamiltonian prisms. J. Graph Theor. 17(2), 161–171 (1993)

    MathSciNet  MATH  Google Scholar 

  26. Peleg, D., Ullman, J.: An optimal synchronizer for the hypercube. SIAM J. Comput. 18(4), 740–747 (1989)

    MathSciNet  MATH  Google Scholar 

  27. Tarjan, R.: Depth-first search and linear graph algorithms. SIAM J. Comput. 1(2), 146–160 (1972)

    MathSciNet  MATH  Google Scholar 

  28. Thorup, M., Zwick, U.: Approximate distance oracles. J. ACM 52(1), 1–24 (2005)

    MathSciNet  MATH  Google Scholar 

  29. Venkatesan, G., Rotics, U., Madanlal, M., Makowsky, J., Pandu Rangan, C.: Restrictions of minimum spanner problems. Inform. Comput. 136(2), 143–164 (1997)

    MathSciNet  MATH  Google Scholar 

  30. Wang, W., Balkcom, D., Chakrabarti, A.: A fast online spanner for roadmap construction. Int. J. Rob. Res. 34(11), 1418–1432 (2015)

    Google Scholar 

Download references

Acknowledgements

This research has been partially supported by FAPESP - São Paulo Research Foundation (Proc. 2015/11937-9). R. Gómez is supported by FAPESP (Proc. 2019/14471-1); F. K. Miyazawa is supported by FAPESP (Proc. 2016/01860-1) and CNPq (Proc. 314366/2018-0); Y. Wakabayashi is supported by CNPq (Proc. 311892/2021-3 and 423833/2018-9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renzo Gómez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gómez, R., Miyazawa, F.K., Wakabayashi, Y. (2022). Tree 3-Spanners on Generalized Prisms of Graphs. In: Castañeda, A., Rodríguez-Henríquez, F. (eds) LATIN 2022: Theoretical Informatics. LATIN 2022. Lecture Notes in Computer Science, vol 13568. Springer, Cham. https://doi.org/10.1007/978-3-031-20624-5_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20624-5_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20623-8

  • Online ISBN: 978-3-031-20624-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics