Skip to main content

Estimating the Clustering Coefficient Using Sample Complexity Analysis

  • Conference paper
  • First Online:
LATIN 2022: Theoretical Informatics (LATIN 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13568))

Included in the following conference series:

  • 602 Accesses

Abstract

In this work we present a sampling algorithm for estimating the local clustering of each vertex of a graph. Let G be a graph with n vertices, m edges, and maximum degree \(\varDelta \). We present an algorithm that, given G and fixed constants \(0< \varepsilon , \delta , p < 1\), outputs the values for the local clustering coefficient within \(\varepsilon \) error with probability \(1 - \delta \), for every vertex v of G, provided that the (exact) local clustering of v is not “too small.” We use VC dimension theory to give a bound for the number of edges required to be sampled by the algorithm. We show that the algorithm runs in time \(\mathcal {O}(\varDelta \lg \varDelta + m)\). We also show that the running time drops to, possibly, sublinear time if we restrict G to belong to some well-known graph classes. In particular, for planar graphs the algorithm runs in time \(\mathcal {O}(\varDelta )\). In the case of bounded-degree graphs the running time is \(\mathcal {O}(1)\) if a bound for the value of \(\varDelta \) is given as a part of the input, and \(\mathcal {O}(n)\) otherwise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anthony, M., Bartlett, P.L.: Neural Network Learning: Theoretical Foundations, 1st edn. Cambridge University Press, New York (2009)

    MATH  Google Scholar 

  2. Barabási, A.L., Pósfai, M.: Network Science. Cambridge University Press, Cambridge (2016)

    Google Scholar 

  3. Bloznelis, M.: Degree and clustering coefficient in sparse random intersection graphs. Ann. Appl. Probab. 23(3), 1254–1289 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brautbar, M., Kearns, M.: Local algorithms for finding interesting individuals in large networks. In: Innovations in Computer Science (2010)

    Google Scholar 

  5. de Lima, A.M., da Silva, M.V., Vignatti, A.L.: Percolation centrality via rademacher complexity. Discret. Appl. Math. (2021)

    Google Scholar 

  6. Easley, D.A., Kleinberg, J.M.: Networks, Crowds, and Markets - Reasoning About a Highly Connected World. Cambridge University Press, NY (2010)

    Book  MATH  Google Scholar 

  7. Fronczak, A., Fronczak, P., Hołyst, J.A.: Mean-field theory for clustering coefficients in Barabási-Albert networks. Phys. Rev. E 68(4), 046126 (2003)

    Article  Google Scholar 

  8. Gupta, A.K., Sardana, N.: Significance of clustering coefficient over Jaccard Index. In: 2015 Eighth International Conference on Contemporary Computing (IC3), pp. 463–466. IEEE (2015)

    Google Scholar 

  9. Holland, P.W., Leinhardt, S.: Transitivity in structural models of small groups. Comp. Group Stud. 2(2), 107–124 (1971)

    Article  Google Scholar 

  10. Iskhakov, L., Kamiński, B., Mironov, M., Prałat, P., Prokhorenkova, L.: Local clustering coefficient of spatial preferential attachment model. J. Complex Netw. 8(1), cnz019 (2020)

    Google Scholar 

  11. Ji, Q., Li, D., Jin, Z.: Divisive algorithm based on node clustering coefficient for community detection. IEEE Access 8, 142337–142347 (2020)

    Article  Google Scholar 

  12. Kartun-Giles, A.P., Bianconi, G.: Beyond the clustering coefficient: a topological analysis of node neighbourhoods in complex networks. Chaos Solit. Fractals: X 1, 100004 (2019)

    Article  Google Scholar 

  13. Kolda, T.G., Pinar, A., Plantenga, T., Seshadhri, C., Task, C.: Counting triangles in massive graphs with MapReduce. SIAM J. Sci. Comput. 36(5), S48–S77 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Krot, A., Ostroumova Prokhorenkova, L.: Local clustering coefficient in generalized preferential attachment models. In: Gleich, D.F., Komjáthy, J., Litvak, N. (eds.) WAW 2015. LNCS, vol. 9479, pp. 15–28. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26784-5_2

    Chapter  MATH  Google Scholar 

  15. Kutzkov, K., Pagh, R.: On the streaming complexity of computing local clustering coefficients. In: Proceedings of the Sixth ACM International Conference on Web Search and Data Mining, pp. 677–686 (2013)

    Google Scholar 

  16. Li, M., Zhang, R., Hu, R., Yang, F., Yao, Y., Yuan, Y.: Identifying and ranking influential spreaders in complex networks by combining a local-degree sum and the clustering coefficient. Int. J. Mod. Phys. B 32(06), 1850118 (2018)

    Article  MATH  Google Scholar 

  17. Li, X., Chang, L., Zheng, K., Huang, Z., Zhou, X.: Ranking weighted clustering coefficient in large dynamic graphs. World Wide Web 20(5), 855–883 (2017)

    Article  Google Scholar 

  18. Li, Y., Long, P.M., Srinivasan, A.: Improved bounds on the sample complexity of learning. J. Comput. Syst. Sci. 62(3), 516–527 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  19. de Lima, A.M., da Silva, M.V., Vignatti, A.L.: Estimating the percolation centrality of large networks through pseudo-dimension theory. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1839–1847 (2020)

    Google Scholar 

  20. Liu, S., Xia, Z.: A two-stage BFS local community detection algorithm based on node transfer similarity and local clustering coefficient. Phys. A 537, 122717 (2020)

    Article  Google Scholar 

  21. Mitzenmacher, M., Upfal, E.: Probability and Computing: Randomization and Probabilistic Techniques in Algorithms and Data Analysis, 2nd edn. Cambridge University Press, New York (2017)

    MATH  Google Scholar 

  22. Mohri, M., Rostamizadeh, A., Talwalkar, A.: Foundations of Machine Learning. The MIT Press, Cambridge (2012)

    MATH  Google Scholar 

  23. Nascimento, M.C.: Community detection in networks via a spectral heuristic based on the clustering coefficient. Discret. Appl. Math. 176, 89–99 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Newman, M.E.J.: Networks: an introduction. Oxford University Press (2010)

    Google Scholar 

  25. Pan, X., Xu, G., Wang, B., Zhang, T.: A novel community detection algorithm based on local similarity of clustering coefficient in social networks. IEEE Access 7, 121586–121598 (2019)

    Article  Google Scholar 

  26. Riondato, M., Kornaropoulos, E.M.: Fast approximation of betweenness centrality through sampling. Data Min. Knowl. Disc. 30(2), 438–475 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. Riondato, M., Upfal, E.: ABRA: approximating betweenness centrality in static and dynamic graphs with rademacher averages. ACM Trans. Knowl. Discov. Data 12(5), 61:1–61:38 (2018)

    Google Scholar 

  28. Seshadhri, C., Pinar, A., Kolda, T.G.: Fast triangle counting through wedge sampling. In: Proceedings of the SIAM Conference on Data Mining, vol. 4, p. 5. Citeseer (2013)

    Google Scholar 

  29. Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge University Press, New York (2014)

    Book  MATH  Google Scholar 

  30. Soffer, S.N., Vazquez, A.: Network clustering coefficient without degree-correlation biases. Phys. Rev. E 71(5), 057101 (2005)

    Article  Google Scholar 

  31. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393(6684), 440–442 (1998)

    Article  MATH  Google Scholar 

  32. West, D.B.: Introduction to Graph Theory, 2 edn. Prentice Hall (2000)

    Google Scholar 

  33. Wu, Z., Lin, Y., Wang, J., Gregory, S.: Link prediction with node clustering coefficient. Phys. A 452, 1–8 (2016)

    Article  Google Scholar 

  34. Zhang, H., Zhu, Y., Qin, L., Cheng, H., Yu, J.X.: Efficient local clustering coefficient estimation in massive graphs. In: Candan, S., Chen, L., Pedersen, T.B., Chang, L., Hua, W. (eds.) DASFAA 2017. LNCS, vol. 10178, pp. 371–386. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-55699-4_23

    Chapter  Google Scholar 

  35. Zhang, J., Tang, J., Ma, C., Tong, H., Jing, Y., Li, J.: Panther: fast top-k similarity search on large networks. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1445–1454 (2015)

    Google Scholar 

  36. Zhang, R., Li, L., Bao, C., Zhou, L., Kong, B.: The community detection algorithm based on the node clustering coefficient and the edge clustering coefficient. In: Proceeding of the 11th World Congress on Intelligent Control and Automation, pp. 3240–3245. IEEE (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alane M. de Lima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

de Lima, A.M., da Silva, M.V.G., Vignatti, A.L. (2022). Estimating the Clustering Coefficient Using Sample Complexity Analysis. In: Castañeda, A., Rodríguez-Henríquez, F. (eds) LATIN 2022: Theoretical Informatics. LATIN 2022. Lecture Notes in Computer Science, vol 13568. Springer, Cham. https://doi.org/10.1007/978-3-031-20624-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20624-5_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20623-8

  • Online ISBN: 978-3-031-20624-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics