Skip to main content

On Arbitrarily Regular Conforming Virtual Element Methods for Elliptic Partial Differential Equations

  • Conference paper
  • First Online:
Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2020+1

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 137))

  • 453 Accesses

Abstract

The Virtual Element Method (VEM) is a very effective framework to design numerical approximations with high global regularity to the solutions of elliptic partial differential equations. In this paper, we review the construction of such approximations for an elliptic problem of order 2p1 using conforming, finite dimensional subspaces of \(H^{p_2}(\Omega )\), where p1 and p2 are two integer numbers such that p2 ≥ p1 ≥ 1 and \(\Omega \subset \mathbb {R}^2\) is the computational domain. An abstract convergence result is presented in a suitably defined energy norm. The space formulation and major aspects such as the choice and unisolvence of the degrees of freedom are discussed, also providing specific examples corresponding to various practical cases of high global regularity. Finally, the construction of the “enhanced” formulation of the virtual element spaces is also discussed in details with a proof that the dimension of the “regular” and “enhanced” spaces is the same and that the virtual element functions in both spaces can be described by the same choice of the degrees of freedom.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmad, B., Alsaedi, A., Brezzi, F., Marini, L.D., Russo, A.: Equivalent projectors for virtual element methods. Comput. Math. Appl. 66(3), 376–391 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aldakheel, F., Hudobivnik, B., Hussein, A., Wriggers, P.: Phase-field modeling of brittle fracture using an efficient virtual element scheme. Comput. Methods Appl. Mech. Engrg. 341, 443–466 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  3. Antonietti, P.F., Giani, S., Houston, P.: hp-version composite discontinuous Galerkin methods for elliptic problems on complicated domains. SIAM J. Sci. Comput. 35(3), A1417–A1439 (2013)

    Google Scholar 

  4. Antonietti, P.F., Beirão da Veiga, L., Scacchi, S., Verani, M.: A C1 virtual element method for the Cahn-Hilliard equation with polygonal meshes. SIAM J. Numer. Anal. 54(1), 34–56 (2016)

    Google Scholar 

  5. Antonietti, P.F., Bruggi, M., Scacchi, S., Verani, M.: On the virtual element method for topology optimization on polygonal meshes: a numerical study. Comput. Math. Appl. 74(5), 1091–1109 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Antonietti, P.F., Mascotto, L., Verani, M.: A multigrid algorithm for the p-version of the virtual element method. ESAIM Math. Model. Numer. Anal. 52(1), 337–364 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  7. Antonietti, P.F., Manzini, G., Verani, M.: The conforming virtual element method for polyharmonic problems. Comput. Math. Appl. 79(7), 2021–2034 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  8. Antonietti, P.F., Bertoluzza, S., Prada, D., Verani, M.: The virtual element method for a minimal surface problem. Calcolo 57(4), Paper No. 39, 21 (2020)

    Google Scholar 

  9. Antonietti, P.F., Berrone, S., Borio, A., D’Auria, A., Verani, M., Weisser, S.: Anisotropic a posteriori error estimate for the virtual element method. IMA J. Numer. Anal. (2021). https://doi.org/10.1093/imanum/drab001

  10. Antonietti, P.F., Manzini, G., Mazzieri, I., Mourad, H., Verani, M.: The arbitrary-order virtual element method for linear elastodynamics models: Convergence, stability and dispersion-dissipation analysis. Int. J. Numer. Methods Eng. 122, 934–971 (2021)

    Article  MathSciNet  Google Scholar 

  11. Antonietti, P.F., Manzini, G., Scacchi, S., Verani, M.: A review on arbitrarily regular conforming virtual element methods for second- and higher-order elliptic partial differential equations. Math. Models Methods Appl. Sci. 31(14), 2825–2853 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  12. Argyris, J.H., Fried, I., Scharpf, D.W.: The TUBA family of plate elements for the matrix displacement method. Aeronaut. J. R. Aeronaut. Soc. 72, 701–709 (1968)

    Google Scholar 

  13. Artioli, E., de Miranda, S., Lovadina, C., Patruno, L.: A stress/displacement virtual element method for plane elasticity problems. Comput. Methods Appl. Mech. Eng. 325, 155–174 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Artioli, E., de Miranda, S., Lovadina, C., Patruno, L.: A family of virtual element methods for plane elasticity problems based on the Hellinger-Reissner principle. Comput. Methods Appl. Mech. Eng. 340, 978–999 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ayuso de Dios, B., Lipnikov, K., Manzini, G.: The non-conforming virtual element method. ESAIM Math. Model. Numer. 50(3), 879–904 (2016)

    Google Scholar 

  16. Beirão da Veiga, L., Brezzi, F., Cangiani, A., Manzini, G., Marini, L.D., Russo, A.: Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23(1), 199–214 (2013)

    Google Scholar 

  17. Beirão da Veiga, L., Manzini, G.: A virtual element method with arbitrary regularity. IMA J. Numer. Anal. 34(2), 782–799 (2014)

    Google Scholar 

  18. Beirão da Veiga, L., Lipnikov, K., Manzini, G.: The mimetic finite difference method for elliptic problems. Modeling, Simulations and Applications, vol. 11, I edn. Springer, Berlin (2014)

    Google Scholar 

  19. Beirão da Veiga, L., Manzini, G.: Residual a posteriori error estimation for the virtual element method for elliptic problems. ESAIM Math. Model. Numer. Anal. 49(2), 577–599 (2015)

    Google Scholar 

  20. Beirão da Veiga, L., Brezzi, F., Marini, L.D., Russo, A.: H(div) and H(curl)-conforming VEM. Numer. Math. 133(2), 303–332 (2016)

    Google Scholar 

  21. Beirão da Veiga, L., Brezzi, F., Marini, L.D., Russo, A.: Mixed virtual element methods for general second order elliptic problems on polygonal meshes. ESAIM: Math. Model. Numer. Anal. 50(3), 727–747 (2016)

    Google Scholar 

  22. Beirão da Veiga, L., Brezzi, F., Marini, L.D., Russo, A.: Virtual element methods for general second order elliptic problems on polygonal meshes. Math. Models Methods Appl. Sci. 26(4), 729–750 (2016)

    Google Scholar 

  23. Beirão da Veiga, L., Lovadina, C., Russo, A.: Stability analysis for the virtual element method. Math. Models Methods Appl. Sci. 27(13), 2557–2594 (2017)

    Google Scholar 

  24. Beirão da Veiga, L., Lovadina, C., Vacca, G.: Divergence free virtual elements for the Stokes problem on polygonal meshes. ESAIM: Math. Model. Numer. Anal. 51(2), 509–535 (2017)

    Google Scholar 

  25. Beirão da Veiga, L., Lovadina, C., Vacca, G.: Virtual elements for the Navier-Stokes problem on polygonal meshes. SIAM J. Numer. Anal. 56(3), 1210–1242 (2018)

    Google Scholar 

  26. Beirão da Veiga, L., Mora, D., Rivera, G.: Virtual elements for a shear-deflection formulation of Reissner-Mindlin plates. Math. Comput. 88(315), 149–178 (2019)

    Google Scholar 

  27. Beirão da Veiga, L., Dassi, F., Russo, A.: A C1 virtual element method on polyhedral meshes. Comput. Math. Appl. 79(7), 1936–1955 (2020)

    Google Scholar 

  28. Bell, K.: A refined triangular plate bending finite element. Int. J. Numer. Meth. Eng. 1(1), 101–122 (1969).

    Article  Google Scholar 

  29. Benedetto, M.F., Berrone, S., Borio, A.: The virtual element method for underground flow situations in fractured data. In: Advances in Discretization Methods. SEMA SIMAI Springer Series, vol. 12, pp. 167–186. Springer, Cham (2016)

    Google Scholar 

  30. Benvenuti, E., Chiozzi, A., Manzini, G., Sukumar, N.: Extended virtual element method for the Laplace problem with singularities and discontinuities. Comput. Methods Appl. Mech. Eng. 356, 571–597 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  31. Blum, H., Rannacher, R.: On the boundary value problem of the biharmonic operator on domains with angular corners. Math. Methods Appl. Sci. 2(4), 556–581 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  32. Brenner, S.C., Scott, R.: The Mathematical Theory of Finite Element Methods, vol. 15. Springer Science & Business Media, New York (2008)

    MATH  Google Scholar 

  33. Brenner, S.C., Sung, L.Y.: Virtual enriching operators. Calcolo 56(4), 1–25 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  34. Brezzi, F., Marini, L.D.: Virtual element methods for plate bending problems. Comput. Methods Appl. Mech. Eng. 253, 455–462 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  35. Brezzi, F., Falk, R.S., Marini, L.D.: Basic principles of mixed virtual element methods. ESAIM Math. Model. Numer. Anal. 48(4), 1227–1240 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  36. Cangiani, A., Dong, Z., Georgoulis, E.H., Houston, P.: hp-Version Discontinuous Galerkin Methods on Polygonal and Polyhedral Meshes. Springer Briefs in Mathematics. Springer, Cham (2017)

    Google Scholar 

  37. Certik, O., Gardini, F., Manzini, G., Vacca, G.: The virtual element method for eigenvalue problems with potential terms on polytopic meshes. Appl. Math. 63(3), 333–365 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  38. Chen, L., Huang, J.: Some error analysis on virtual element methods. Calcolo 55(1), Paper No. 5, 23 (2018)

    Google Scholar 

  39. Chi, H., Pereira, A., Menezes, I.F., Paulino, G.H.: Virtual element method (VEM)-based topology optimization: an integrated framework. Struct. Multidiscip. Optim. 62(3), 1089–1114 (2020)

    Article  MathSciNet  Google Scholar 

  40. Chinosi, C., Marini, L.D.: Virtual element method for fourth order problems: L2-estimates. Comput. Math. Appl. 72(8), 1959–1967 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  41. Ciarlet, P.G.: The finite element method for elliptic problems. Classics Appl. Math. 40, 1–511 (2002)

    MathSciNet  Google Scholar 

  42. Clough, R.W., Tocher, J.L. (eds.): Finite element stiffness matrices for analysis of plates in bending. In: Proceedings of the Conference on Matrix Methods in Structural Mechanics (1965)

    Google Scholar 

  43. Cockburn, B., Dong, B., Guzmán, J.: A superconvergent LDG-hybridizable Galerkin method for second-order elliptic problems. Math. Comput. 77(264), 1887–1916 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  44. Di Pietro, D.A., Droniou, J.: The Hybrid High-Order Method for Polytopal Meshes: Design, Analysis, and Applications. Modeling, Simulations and Applications. Springer, Berlin (2020)

    Google Scholar 

  45. Gazzola, F., Grunau, H.C., Sweers, G.: Polyharmonic Boundary Value Problems. Lecture Notes in Mathematics, vol. 1991. Springer, Berlin (2010)

    Google Scholar 

  46. Hu, J., Zhang, S.: The minimal conforming Hk finite element spaces on \(\mathbb {R}^n\) rectangular grids. Math. Comput. 84(292), 563–579 (2015)

    Google Scholar 

  47. Hu, J., Lin, T., Wu, Q.: A construction of Cr conforming finite element spaces in any dimension (2021). arXiv:2103.14924

    Google Scholar 

  48. Huang, X.: Nonconforming virtual element method for 2mth order partial differential equations in \(\mathbb {R}^n\) with m > n. Calcolo 57(4), Paper No. 42, 38 (2020)

    Google Scholar 

  49. Chen, C., Huang, X., Wei, H.: Hm-conforming virtual elements in arbitrary dimension. SIAM J. Numer. Anal. 60(6), 3099–3123 (2022). https://doi.org/10.1137/21M1440323

    Article  MathSciNet  MATH  Google Scholar 

  50. Li, M., Zhao, J., Huang, C., Chen, S.: Conforming and nonconforming vems for the fourth-order reaction–subdiffusion equation: a unified framework. IMA J. Numer. Anal. (2021)

    Google Scholar 

  51. Lovadina, C., Mora, D., Velásquez, I.: A virtual element method for the von Kármán equations. ESAIM Math. Model. Numer. Anal. 55(2), 533–560 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  52. Mascotto, L., Perugia, I., Pichler, A.: A nonconforming Trefftz virtual element method for the Helmholtz problem. Math. Models Methods Appl. Sci. 29(9), 1619–1656 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  53. Mascotto, L., Perugia, I., Pichler, A.: A nonconforming Trefftz virtual element method for the Helmholtz problem: numerical aspects. Comput. Methods Appl. Mech. Eng. 347, 445–476 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  54. Mora, D., Rivera, G., Velásquez, I.: A virtual element method for the vibration problem of Kirchhoff plates. ESAIM Math. Model. Numer. Anal. 52(4), 1437–1456 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  55. Mora, D., Silgado, A.: A C1 virtual element method for the stationary quasi-geostrophic equations of the ocean. Comput. Math. Appl. (2021)

    Google Scholar 

  56. Mora, D., Velásquez, I.: A virtual element method for the transmission eigenvalue problem. Math. Models Methods Appl. Sci. 28(14), 2803–2831 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  57. Mora, D., Velásquez, I.: Virtual element for the buckling problem of Kirchhoff-Love plates. Comput. Methods Appl. Mech. Eng. 360, 112687, 22 (2020)

    Google Scholar 

  58. Park, K., Chi, H., Paulino, G.H.: On nonconvex meshes for elastodynamics using virtual element methods with explicit time integration. Comput. Methods Appl. Mech. Eng. 356, 669–684 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  59. Park, K., Chi, H., Paulino, G.H.: Numerical recipes for elastodynamic virtual element methods with explicit time integration. Int. J. Numer. Methods Eng. 121(1), 1–31 (2020)

    Article  MathSciNet  Google Scholar 

  60. Perugia, I., Pietra, P., Russo, A.: A plane wave virtual element method for the Helmholtz problem. ESAIM Math. Model. Num. 50(3), 783–808 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  61. Sukumar, N., Tabarraei, A.: Conforming polygonal finite elements. Int. J. Numer. Methods Eng. 61(12), 2045–2066 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  62. Wriggers, P., Rust, W.T., Reddy, B.D.: A virtual element method for contact. Comput. Mech. 58(6), 1039–1050 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  63. Zhang, S.: A family of 3D continuously differentiable finite elements on tetrahedral grids. Appl. Numer. Math. 59(1), 219–233 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  64. Zhang, S.: A family of differentiable finite elements on simplicial grids in four space dimensions. Math. Numer. Sin. 38(3), 309–324 (2016)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

PFA and MV acknowledge the financial support of PRIN research grant number 201744KLJL “Virtual Element Methods: Analysis and Applications” and PRIN research grant number 20204LN5N5 “Advanced polyhedral discretisations of heterogeneous PDEs for multiphysics problems” funded by MIUR. GM acknowledges the financial support of the LDRD program of Los Alamos National Laboratory under project number 20220129ER. Los Alamos National Laboratory is operated by Triad National Security, LLC, for the National Nuclear Security Administration of U.S. Department of Energy (Contract No. 89233218CNA000001). The Authors are affiliated to GNCS-INdAM (Italy).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Verani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Antonietti, P.F., Manzini, G., Scacchi, S., Verani, M. (2023). On Arbitrarily Regular Conforming Virtual Element Methods for Elliptic Partial Differential Equations. In: Melenk, J.M., Perugia, I., Schöberl, J., Schwab, C. (eds) Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2020+1. Lecture Notes in Computational Science and Engineering, vol 137. Springer, Cham. https://doi.org/10.1007/978-3-031-20432-6_1

Download citation

Publish with us

Policies and ethics