Skip to main content

Sparsity-Regularized Geometric Mean Metric Learning for Kinship Verification

  • Conference paper
  • First Online:
Biometric Recognition (CCBR 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13628))

Included in the following conference series:

Abstract

Kinship verification through face images is a challenging research problem in biometrics. In this paper, we propose a sparsity-regularized geometric mean metric learning (SGMML) method to improve the well-known geometric mean metric learning (GMML) method and apply it to kinship verification task. Unlike GMML method that utilizes a linear map with fixed dimension, our SGMML method is capable of automatically learning the best projection dimension by employing the sparsity constraints on Mahalabios metric matrix. The proposed SGMML can effectively tackle the over-fitting problem and the data mixing up problem in the projected space. We conduct experiments on two benchmark kinship verification datasets, and experimental results demonstrate the effectiveness of our SGMML approach in kinship verification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lu, J., Zhou, X., Tan, Y.-P., Shang, Y., Zhou, J.: Neighborhood repulsed metric learning for kinship verification. IEEE Trans. Pattern Anal. Mach. Intell. 36(2), 331–345 (2014)

    Article  Google Scholar 

  2. Zhou, X., Hu, J., Lu, J., Shang, Y., Guan, Y.: Kinship verification from facial images under uncontrolled conditions. In: ACM International Conference on Multimedia, pp. 953–956 (2011)

    Google Scholar 

  3. Zhou, X., Jin, K., Xu, M., Guo, G.: Learning deep compact similarity metric for kinship verification from face images. Inf. Fusion 48, 84–94 (2019)

    Article  Google Scholar 

  4. Qin, X., Tan, X., Chen, S.: Trisubject kinship verification: understanding the core of A family. IEEE Trans. Multimedia 17(10), 1855–1867 (2015)

    Article  Google Scholar 

  5. Lu, J., et al.: The FG 2015 kinship verification in the wild evaluation. In: IEEE International Conference and Workshops on Automatic Face and Gesture Recognition, pp. 1–7 (2015)

    Google Scholar 

  6. Lu, J., Hu, J., Tan, Y.-P.: Discriminative deep metric learning for face and kinship verification. IEEE Trans. Image Process. 26(9), 4269–4282 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hu, J., Lu, J., Tan, Y.-P., Yuan, J., Zhou, J.: Local large-margin multi-metric learning for face and kinship verification. IEEE Trans. Circuits Syst. Video Technol. 28(8), 1875–1891 (2018)

    Article  Google Scholar 

  8. Zadeh, P., Hosseini, R., Sra, S.: Geometric mean metric learning. In: International Conference on Machine Learning, pp. 2464–2471 (2016)

    Google Scholar 

  9. Jiang, N., Liu, W., Wu, Y.: Order determination and sparsity-regularized metric learning adaptive visual tracking. In: IEEE Conference on Computer Vision and Pattern Recognition (2012)

    Google Scholar 

  10. Guillaumin, M., Verbeek, J., Schmid, C.: Is that you? Metric learning approaches for face identification. In: IEEE International Conference on Computer Vision, pp. 498–505 (2009)

    Google Scholar 

  11. Xing, E.P., Jordan, M.I., Russell, S.J., Ng, A.Y.: Distance metric learning with application to clustering with side-information. In: Advances in Neural Information Processing Systems, pp. 521–528 (2003)

    Google Scholar 

  12. Nguyen, B., Morell, C., Baets, B.D.: Supervised distance metric learning through maximization of the Jeffrey divergence. Pattern Recogn. 64, 215–225 (2017)

    Article  MATH  Google Scholar 

  13. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 886–893 (2005)

    Google Scholar 

  14. Ahonen, T., Hadid, A., Pietikainen, M.: Face description with local binary patterns: application to face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 28(12), 2037–2041 (2006)

    Article  MATH  Google Scholar 

  15. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grant 62006013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junlin Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, Y., Hu, J. (2022). Sparsity-Regularized Geometric Mean Metric Learning for Kinship Verification. In: Deng, W., et al. Biometric Recognition. CCBR 2022. Lecture Notes in Computer Science, vol 13628. Springer, Cham. https://doi.org/10.1007/978-3-031-20233-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20233-9_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20232-2

  • Online ISBN: 978-3-031-20233-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics