Skip to main content

Weakly-Supervised Temporal Action Detection for Fine-Grained Videos with Hierarchical Atomic Actions

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13670))

Included in the following conference series:

Abstract

Action understanding has evolved into the era of fine granularity, as most human behaviors in real life have only minor differences. To detect these fine-grained actions accurately in a label-efficient way, we tackle the problem of weakly-supervised fine-grained temporal action detection in videos for the first time. Without the careful design to capture subtle differences between fine-grained actions, previous weakly-supervised models for general action detection cannot perform well in the fine-grained setting. We propose to model actions as the combinations of reusable atomic actions which are automatically discovered from data through self-supervised clustering, in order to capture the commonality and individuality of fine-grained actions. The learnt atomic actions, represented by visual concepts, are further mapped to fine and coarse action labels leveraging the semantic label hierarchy. Our approach constructs a visual representation hierarchy of four levels: clip level, atomic action level, fine action class level and coarse action class level, with supervision at each level. Extensive experiments on two large-scale fine-grained video datasets, FineAction and FineGym, show the benefit of our proposed weakly-supervised model for fine-grained action detection, and it achieves state-of-the-art results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Code is available at https://github.com/lizhi1104/HAAN.git.

  2. 2.

    https://competitions.codalab.org/competitions/32363.

References

  1. Abu-El-Haija, S., et al.: YouTube-8M: a large-scale video classification benchmark. arXiv preprint arXiv:1609.08675 (2016)

  2. Caba Heilbron, F., Escorcia, V., Ghanem, B., Carlos Niebles, J.: Activitynet: a large-scale video benchmark for human activity understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 961–970 (2015)

    Google Scholar 

  3. Carbonneau, M.A., Cheplygina, V., Granger, E., Gagnon, G.: Multiple instance learning: a survey of problem characteristics and applications. Pattern Recogn. 77, 329–353 (2018)

    Article  Google Scholar 

  4. Carreira, J., Zisserman, A.: Quo vadis, action recognition? A new model and the kinetics dataset. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6299–6308 (2017)

    Google Scholar 

  5. Chen, C., Li, O., Tao, D., Barnett, A., Rudin, C., Su, J.K.: This looks like that: deep learning for interpretable image recognition. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  6. Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., Abbeel, P.: Infogan: interpretable representation learning by information maximizing generative adversarial nets. In: Proceedings of the 30th International Conference on Neural Information Processing Systems, pp. 2180–2188 (2016)

    Google Scholar 

  7. Damen, D., et al.: Rescaling egocentric vision: collection, pipeline and challenges for epic-kitchens-100. Int. J. Comput. Vision 130(1), 33–55 (2022)

    Article  MathSciNet  Google Scholar 

  8. Dietterich, T.G., Lathrop, R.H., Lozano-Pérez, T.: Solving the multiple instance problem with axis-parallel rectangles. Artif. Intell. 89(1), 31–71 (1997)

    Article  MATH  Google Scholar 

  9. Fathi, A., Ren, X., Rehg, J.M.: Learning to recognize objects in egocentric activities. In: CVPR 2011, pp. 3281–3288. IEEE (2011)

    Google Scholar 

  10. Gaidon, A., Harchaoui, Z., Schmid, C.: Temporal localization of actions with actoms. IEEE Trans. Pattern Anal. Mach. Intell. 35(11), 2782–2795 (2013)

    Article  Google Scholar 

  11. Ghoddoosian, R., Sayed, S., Athitsos, V.: Hierarchical modeling for task recognition and action segmentation in weakly-labeled instructional videos. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 1922–1932 (2022)

    Google Scholar 

  12. Ghorbani, A., Wexler, J., Kim, B.: Automating interpretability: discovering and testing visual concepts learned by neural networks. arXiv abs/1902.03129 (2019)

    Google Scholar 

  13. Higgins, I., et al.: Scan: learning hierarchical compositional visual concepts. arXiv preprint arXiv:1707.03389 (2017)

  14. Ilse, M., Tomczak, J., Welling, M.: Attention-based deep multiple instance learning. In: Dy, J., Krause, A. (eds.) Proceedings of the 35th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 80, pp. 2127–2136. PMLR (2018)

    Google Scholar 

  15. Ji, J., Krishna, R., Fei-Fei, L., Niebles, J.C.: Action genome: actions as compositions of spatio-temporal scene graphs. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10236–10247 (2020)

    Google Scholar 

  16. Jiang, Y.G., et al.: Thumos challenge: action recognition with a large number of classes (2014)

    Google Scholar 

  17. Jiang, Y.G., Wu, Z., Wang, J., Xue, X., Chang, S.F.: Exploiting feature and class relationships in video categorization with regularized deep neural networks. IEEE Trans. Pattern Anal. Mach. Intell. 40(2), 352–364 (2018)

    Article  Google Scholar 

  18. Kim, B., Wattenberg, M., Gilmer, J., Cai, C., Wexler, J., Viegas, F., et al.: Interpretability beyond feature attribution: quantitative testing with concept activation vectors (TCAV). In: International Conference on Machine Learning, pp. 2668–2677. PMLR (2018)

    Google Scholar 

  19. Lee, P., Wang, J., Lu, Y., Byun, H.: Weakly-supervised temporal action localization by uncertainty modeling. In: AAAI Conference on Artificial Intelligence, vol. 2 (2021)

    Google Scholar 

  20. Lillo, I., Soto, A., Carlos Niebles, J.: Discriminative hierarchical modeling of spatio-temporally composable human activities. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 812–819 (2014)

    Google Scholar 

  21. Lin, T., Liu, X., Li, X., Ding, E., Wen, S.: BMN: boundary-matching network for temporal action proposal generation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3889–3898 (2019)

    Google Scholar 

  22. Liu, D., Jiang, T., Wang, Y.: Completeness modeling and context separation for weakly supervised temporal action localization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1298–1307 (2019)

    Google Scholar 

  23. Liu, Y., Wang, L., Ma, X., Wang, Y., Qiao, Y.: Fineaction: a fine-grained video dataset for temporal action localization. arXiv preprint arXiv:2105.11107 (2021)

  24. Luo, Z., et al.: Weakly-supervised action localization with expectation-maximization multi-instance learning. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12374, pp. 729–745. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58526-6_43

    Chapter  Google Scholar 

  25. Ma, J., Gorti, S.K., Volkovs, M., Yu, G.: Weakly supervised action selection learning in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7587–7596 (2021)

    Google Scholar 

  26. Mac, K.N.C., Joshi, D., Yeh, R.A., Xiong, J., Feris, R.S., Do, M.N.: Learning motion in feature space: locally-consistent deformable convolution networks for fine-grained action detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6282–6291 (2019)

    Google Scholar 

  27. MacQueen, J.: Classification and analysis of multivariate observations. In: 5th Berkeley Symposium on Mathematical Statistics and Probability, pp. 281–297 (1967)

    Google Scholar 

  28. Mavroudi, E., Bhaskara, D., Sefati, S., Ali, H., Vidal, R.: End-to-end fine-grained action segmentation and recognition using conditional random field models and discriminative sparse coding. In: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1558–1567. IEEE (2018)

    Google Scholar 

  29. Narayan, S., Cholakkal, H., Hayat, M., Khan, F.S., Yang, M.H., Shao, L.: D2-Net: weakly-supervised action localization via discriminative embeddings and denoised activations. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 13608–13617 (2021)

    Google Scholar 

  30. Narayan, S., Cholakkal, H., Khan, F.S., Shao, L.: 3C-Net: category count and center loss for weakly-supervised action localization. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8679–8687 (2019)

    Google Scholar 

  31. Nguyen, P., Liu, T., Prasad, G., Han, B.: Weakly supervised action localization by sparse temporal pooling network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6752–6761 (2018)

    Google Scholar 

  32. Ni, B., Paramathayalan, V.R., Moulin, P.: Multiple granularity analysis for fine-grained action detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 756–763 (2014)

    Google Scholar 

  33. Pardo, A., Alwassel, H., Caba, F., Thabet, A., Ghanem, B.: Refineloc: iterative refinement for weakly-supervised action localization. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 3319–3328 (2021)

    Google Scholar 

  34. Paul, S., Roy, S., Roy-Chowdhury, A.K.: W-TALC: weakly-supervised temporal activity localization and classification. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 563–579 (2018)

    Google Scholar 

  35. Piergiovanni, A.J., Ryoo, M.S.: Fine-grained activity recognition in baseball videos. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 1821–18218 (2018)

    Google Scholar 

  36. Reynolds, D.A.: Gaussian mixture models. Encyclopedia Biometrics 741, 659–663 (2009)

    Article  Google Scholar 

  37. Richard, A., Kuehne, H., Gall, J.: Weakly supervised action learning with RNN based fine-to-coarse modeling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 754–763 (2017)

    Google Scholar 

  38. Rohrbach, M., Amin, S., Andriluka, M., Schiele, B.: A database for fine grained activity detection of cooking activities. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1194–1201. IEEE (2012)

    Google Scholar 

  39. Shao, D., Zhao, Y., Dai, B., Lin, D.: Finegym: a hierarchical video dataset for fine-grained action understanding. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2616–2625 (2020)

    Google Scholar 

  40. Shou, Z., Gao, H., Zhang, L., Miyazawa, K., Chang, S.F.: Autoloc: weakly-supervised temporal action localization in untrimmed videos. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 154–171 (2018)

    Google Scholar 

  41. Singh, B., Marks, T.K., Jones, M., Tuzel, O., Shao, M.: A multi-stream bi-directional recurrent neural network for fine-grained action detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1961–1970 (2016)

    Google Scholar 

  42. Stein, S., McKenna, S.J.: Combining embedded accelerometers with computer vision for recognizing food preparation activities. In: Proceedings of the 2013 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 729–738 (2013)

    Google Scholar 

  43. Sun, C., Shetty, S., Sukthankar, R., Nevatia, R.: Temporal localization of fine-grained actions in videos by domain transfer from web images. In: Proceedings of the 23rd ACM International Conference on Multimedia, pp. 371–380 (2015)

    Google Scholar 

  44. Wang, L., Xiong, Y., Lin, D., Van Gool, L.: Untrimmednets for weakly supervised action recognition and detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4325–4334 (2017)

    Google Scholar 

  45. Whitney, W.F., Chang, M., Kulkarni, T., Tenenbaum, J.B.: Understanding visual concepts with continuation learning. arXiv preprint arXiv:1602.06822 (2016)

  46. Yuan, Y., Lyu, Y., Shen, X., Tsang, I., Yeung, D.Y.: Marginalized average attentional network for weakly-supervised learning. In: ICLR 2019-Seventh International Conference on Learning Representations (2019)

    Google Scholar 

  47. Zhang, T., Ramakrishnan, R., Livny, M.: Birch: an efficient data clustering method for very large databases. ACM SIGMOD Rec. 25(2), 103–114 (1996)

    Article  Google Scholar 

  48. Zhao, Y., Xiong, Y., Wang, L., Wu, Z., Tang, X., Lin, D.: Temporal action detection with structured segment networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2914–2923 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi Li .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2496 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, Z., He, L., Xu, H. (2022). Weakly-Supervised Temporal Action Detection for Fine-Grained Videos with Hierarchical Atomic Actions. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13670. Springer, Cham. https://doi.org/10.1007/978-3-031-20080-9_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20080-9_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20079-3

  • Online ISBN: 978-3-031-20080-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics