Skip to main content

Realistic Blur Synthesis for Learning Image Deblurring

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13667))

Included in the following conference series:

Abstract

Training learning-based deblurring methods demands a tre-mendous amount of blurred and sharp image pairs. Unfortunately, existing synthetic datasets are not realistic enough, and deblurring models trained on them cannot handle real blurred images effectively. While real datasets have recently been proposed, they provide limited diversity of scenes and camera settings, and capturing real datasets for diverse settings is still challenging. To resolve this, this paper analyzes various factors that introduce differences between real and synthetic blurred images. To this end, we present RSBlur, a novel dataset with real blurred images and the corresponding sharp image sequences to enable a detailed analysis of the difference between real and synthetic blur. With the dataset, we reveal the effects of different factors in the blur generation process. Based on the analysis, we also present a novel blur synthesis pipeline to synthesize more realistic blur. We show that our synthesis pipeline can improve the deblurring performance on real blurred images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdelhamed, A., Brubaker, M.A., Brown, M.S.: Noise flow: noise modeling with conditional normalizing flows. In: ICCV, October 2019

    Google Scholar 

  2. Abdelhamed, A., Lin, S., Brown, M.S.: A high-quality denoising dataset for smartphone cameras. In: CVPR, June 2018

    Google Scholar 

  3. Brooks, T., Barron, J.T.: Learning to synthesize motion blur. In: CVPR, June 2019

    Google Scholar 

  4. Brooks, T., Mildenhall, B., Xue, T., Chen, J., Sharlet, D., Barron, J.T.: Unprocessing images for learned raw denoising. In: CVPR, June 2019

    Google Scholar 

  5. Cao, Y., Wu, X., Qi, S., Liu, X., Wu, Z., Zuo, W.: Pseudo-ISP: learning pseudo in-camera signal processing pipeline from A color image denoiser. arXiv preprint arXiv:2103.10234 (2021)

  6. Chang, K.-C., et al.: Learning camera-aware noise models. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12369, pp. 343–358. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58586-0_21

    Chapter  Google Scholar 

  7. Cho, S., Lee, S.: Convergence analysis of map based blur kernel estimation. In: ICCV, pp. 4818–4826, October 2017

    Google Scholar 

  8. Cho, S.J., Ji, S.W., Hong, J.P., Jung, S.W., Ko, S.J.: Rethinking coarse-to-fine approach in single image deblurring. In: ICCV, pp. 4641–4650, October 2021

    Google Scholar 

  9. Cho, S., Lee, S.: Fast motion deblurring. ACM TOG 28(5), 145:1–145:8 (2009)

    Google Scholar 

  10. Cho, S., Wang, J., Lee, S.: Handling outliers in non-blind image deconvolution. In: ICCV (2011)

    Google Scholar 

  11. Deng, S., Ren, W., Yan, Y., Wang, T., Song, F., Cao, X.: Multi-scale separable network for ultra-high-definition video deblurring. In: ICCV, pp. 14030–14039, October 2021

    Google Scholar 

  12. Guo, S., Yan, Z., Zhang, K., Zuo, W., Zhang, L.: Toward convolutional blind denoising of real photographs. In: CVPR, June 2019

    Google Scholar 

  13. Jang, G., Lee, W., Son, S., Lee, K.M.: C2n: Practical generative noise modeling for real-world denoising. In: ICCV, pp. 2350–2359, October 2021

    Google Scholar 

  14. Köhler, R., Hirsch, M., Mohler, B., Schölkopf, B., Harmeling, S.: Recording and playback of camera shake: benchmarking blind deconvolution with a real-world database. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7578, pp. 27–40. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33786-4_3

    Chapter  Google Scholar 

  15. Kupyn, O., Budzan, V., Mykhailych, M., Mishkin, D., Matas, J.: DeblurGAN: blind motion deblurring using conditional adversarial networks. In: CVPR, pp. 8183–8192 (June 2018)

    Google Scholar 

  16. Kupyn, O., Martyniuk, T., Wu, J., Wang, Z.: Deblurgan-v2: Deblurring (orders-of-magnitude) faster and better. In: ICCV, October 2019

    Google Scholar 

  17. Lai, W.S., Huang, J.B., Hu, Z., Ahuja, N., Yang, M.H.: A comparative study for single image blind deblurring. In: CVPR, June 2016

    Google Scholar 

  18. Levin, A., Weiss, Y., Durand, F., Freeman, W.T.: Understanding and evaluating blind deconvolution algorithms. In: CVPR, pp. 1964–1971 (2009)

    Google Scholar 

  19. Levin, A., Weiss, Y., Durand, F., Freeman, W.T.: Efficient marginal likelihood optimization in blind deconvolution. In: CVPR, pp. 2657–2664 (2011)

    Google Scholar 

  20. Li, D., et al.: ARVO: learning all-range volumetric correspondence for video deblurring. In: CVPR, pp. 7721–7731, June 2021

    Google Scholar 

  21. Nah, S., et al.: Ntire 2019 challenge on video deblurring and super-resolution: dataset and study. In: CVPRW, June 2019

    Google Scholar 

  22. Nah, S., Kim, T.H., Lee, K.M.: Deep multi-scale convolutional neural network for dynamic scene deblurring. In: CVPR, July 2017

    Google Scholar 

  23. Pan, J., Sun, D., Pfister, H., Yang, M.H.: Blind image deblurring using dark channel prior. In: CVPR, pp. 1628–1636 (2016)

    Google Scholar 

  24. Park, J., Lee, C., Kim, C.S.: Asymmetric bilateral motion estimation for video frame interpolation. In: ICCV, pp. 14539–14548, October 2021

    Google Scholar 

  25. Rim, J., Lee, H., Won, J., Cho, S.: Real-world blur dataset for learning and benchmarking deblurring algorithms. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12370, pp. 184–201. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58595-2_12

    Chapter  Google Scholar 

  26. Shan, Q., Jia, J., Agarwala, A.: High-quality motion deblurring from a single image. ACM TOG 27(3), 73:1–73:10 (2008)

    Google Scholar 

  27. Shen, Z., et al.: Human-aware motion deblurring. In: ICCV, October 2019

    Google Scholar 

  28. Su, S., Delbracio, M., Wang, J., Sapiro, G., Heidrich, W., Wang, O.: Deep video deblurring for hand-held cameras. In: CVPR, pp. 237–246, July 2017

    Google Scholar 

  29. Sun, L., Cho, S., Wang, J., Hays, J.: Edge-based blur kernel estimation using patch priors. In: ICCP (2013)

    Google Scholar 

  30. Tao, X., Gao, H., Shen, X., Wang, J., Jia, J.: Scale-recurrent network for deep image deblurring. In: CVPR, June 2018

    Google Scholar 

  31. Wang, Z., Cun, X., Bao, J., Zhou, W., Liu, J., Li, H.: Uformer: a general u-shaped transformer for image restoration. In: CVPR, June 2022

    Google Scholar 

  32. Wei, K., Fu, Y., Yang, J., Huang, H.: A physics-based noise formation model for extreme low-light raw denoising. In: CVPR, June 2020

    Google Scholar 

  33. Xu, L., Jia, J.: Two-phase kernel estimation for robust motion deblurring. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6311, pp. 157–170. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15549-9_12

    Chapter  Google Scholar 

  34. Zamir, S.W., Arora, A., Khan, S., Hayat, M., Khan, F.S., Yang, M.H.: Restormer: efficient transformer for high-resolution image restoration. In: CVPR, June 2022

    Google Scholar 

  35. Zamir, S.W., et al.: Multi-stage progressive image restoration. In: CVPR, pp. 14821–14831, June 2021

    Google Scholar 

  36. Zhang, H., Dai, Y., Li, H., Koniusz, P.: Deep stacked hierarchical multi-patch network for image deblurring. In: CVPR, June 2019

    Google Scholar 

  37. Zhang, K., Zuo, W., Chen, Y., Meng, D., Zhang, L.: Beyond a gaussian denoiser: residual learning of deep CNN for image denoising. IEEE TIP 26(7), 3142–3155 (2017)

    MathSciNet  MATH  Google Scholar 

  38. Zhang, K., et al.: Deblurring by realistic blurring. In: CVPR, June 2020

    Google Scholar 

  39. Zhang, Y., Qin, H., Wang, X., Li, H.: Rethinking noise synthesis and modeling in raw denoising. In: ICCV, pp. 4593–4601, October 2021

    Google Scholar 

  40. Zhong, Z., Gao, Y., Zheng, Y., Zheng, B.: Efficient spatio-temporal recurrent neural network for video deblurring. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12351, pp. 191–207. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58539-6_12

    Chapter  Google Scholar 

  41. Zhong, Z., Gao, Y., Zheng, Y., Zheng, B., Sato, I.: Efficient spatio-temporal recurrent neural network for video deblurring. arXiv preprint arXiv:2106.16028 (2021)

  42. Zhong, Z., Zheng, Y., Sato, I.: Towards rolling shutter correction and deblurring in dynamic scenes. In: CVPR, pp. 9219–9228, June 2021

    Google Scholar 

  43. Zhou, S., Zhang, J., Zuo, W., Xie, H., Pan, J., Ren, J.S.: DavaNet: stereo deblurring with view aggregation. In: CVPR, June 2019

    Google Scholar 

Download references

Acknowledgements

This work was supported by Samsung Research Funding & Incubation Center of Samsung Electronics under Project Number SRFC-IT1801-05 and Institute of Information & communications Technology Planning & Evaluation (IITP) grants (2019-0-01906, Artificial Intelligence Graduate School Program (POSTECH)) funded by the Korea government (MSIT) and the National Research Foundation of Korea (NRF) grants (2020R1C1C1014863) funded by the Korea government (MSIT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunghyun Cho .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 18938 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rim, J., Kim, G., Kim, J., Lee, J., Lee, S., Cho, S. (2022). Realistic Blur Synthesis for Learning Image Deblurring. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13667. Springer, Cham. https://doi.org/10.1007/978-3-031-20071-7_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20071-7_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20070-0

  • Online ISBN: 978-3-031-20071-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics