Skip to main content

United Defocus Blur Detection and Deblurring via Adversarial Promoting Learning

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13690))

Abstract

Understanding blur from a single defocused image contains two tasks of defocus detection and deblurring. This paper makes the earliest effort to jointly learn both defocus detection and deblurring without using pixel-level defocus detection annotation and paired defocus deblurring ground truth. We build on the observation that these two tasks are supplementary to each other: Defocus detection can segment the focused area from the defocused image to guide the defocus deblurring; Conversely, to achieve better defocus deblurring, an accurate defocus detection as the guide is essential. Therefore, we implement an adversarial promoting learning framework to jointly handle defocus detection and defocus deblurring. Specifically, a defocus detection generator \(G_{ws}\) is implemented to represent the defocused image as a layered composition of two elements: defocused image \(I_{df}\) and a focused image \(I_f\). Then, \(I_{df}\) and \(I_f\) are fed into a self-referenced defocus deblurring generator \(G_{sr}\) to generate a deblurred image. Two generators of \(G_{ws}\) and \(G_{sr}\) are optimized alternately in an adversarial manner against a discriminator D with unpaired realistic fully-clear images. Thus, \(G_{sr}\) will produce a deblurred image to fool D, and \(G_{ws}\) is forced to generate an accurate defocus detection map to effectively guide \(G_{sr}\). Comprehensive experiments on two defocus detection datasets and one defocus deblurring dataset demonstrate the effectiveness of our framework. Code and model are available at: https://github.com/wdzhao123/APL.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abuolaim, A., Brown, M.S.: Defocus deblurring using dual-pixel data. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12355, pp. 111–126. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58607-2_7

    Chapter  Google Scholar 

  2. Alireza Golestaneh, S., Karam, L.J.: Spatially-varying blur detection based on multiscale fused and sorted transform coefficients of gradient magnitudes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5800–5809 (2017)

    Google Scholar 

  3. Bulat, A., Yang, J., Tzimiropoulos, G.: To learn image super-resolution, use a GAN to learn how to do image degradation first. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 185–200 (2018)

    Google Scholar 

  4. Chen, J., Chen, J., Chao, H., Yang, M.: Image blind denoising with generative adversarial network based noise modeling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3155–3164 (2018)

    Google Scholar 

  5. Cun, X., Pun, C.-M.: Defocus blur detection via depth distillation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12358, pp. 747–763. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58601-0_44

    Chapter  Google Scholar 

  6. Ding, J., Huang, Y., Liu, W., Huang, K.: Severely blurred object tracking by learning deep image representations. IEEE Trans. Circuits Syst. Video Technol. 26(2), 319–331 (2015)

    Article  Google Scholar 

  7. Guo, Q., Feng, W., Gao, R., Liu, Y., Wang, S.: Exploring the effects of blur and deblurring to visual object tracking. IEEE Trans. Image Process. 30, 1812–1824 (2021)

    Article  Google Scholar 

  8. Gur, S., Wolf, L.: Single image depth estimation trained via depth from defocus cues. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 7683–7692 (2019)

    Google Scholar 

  9. Jiang, P., Ling, H., Yu, J., Peng, J.: Salient region detection by UFO: uniqueness, focusness and objectness. In: IEEE International Conference on Computer Vision, pp. 1976–1983 (2013)

    Google Scholar 

  10. Karaali, A., Jung, C.R.: Edge-based defocus blur estimation with adaptive scale selection. IEEE Trans. Image Process. 27(3), 1126–1137 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kim, B., Son, H., Park, S.J., Cho, S., Lee, S.: Defocus and motion blur detection with deep contextual features. In: Computer Graphics Forum, vol. 37, pp. 277–288 (2018)

    Google Scholar 

  12. Kupyn, O., Martyniuk, T., Wu, J., Wang, Z.: DeblurGAN-v2: deblurring (orders-of-magnitude) faster and better. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8878–8887 (2019)

    Google Scholar 

  13. Lee, J., Lee, S., Cho, S., Lee, S.: Deep defocus map estimation using domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 12222–12230 (2019)

    Google Scholar 

  14. Lee, J., Son, H., Rim, J., Cho, S., Lee, S.: Iterative filter adaptive network for single image defocus deblurring. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2034–2042 (2021)

    Google Scholar 

  15. Li, J., et al.: Layer-output guided complementary attention learning for image defocus blur detection. IEEE Trans. Image Process. 30, 3748–3763 (2021)

    Article  Google Scholar 

  16. Luo, B., Cheng, Z., Xu, L., Zhang, G., Li, H.: Blind image deblurring via superpixel segmentation prior. IEEE Trans. Circuits Syst. Video Technol. 32, 1467–1482 (2021)

    Article  Google Scholar 

  17. Pan, L., Dai, Y., Liu, M., Porikli, F., Pan, Q.: Joint stereo video deblurring, scene flow estimation and moving object segmentation. IEEE Trans. Image Process. 29, 1748–1761 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  18. Pang, Y., Zhu, H., Li, X., Li, X.: Classifying discriminative features for blur detection. IEEE Trans. Cybern. 46(10), 2220–2227 (2015)

    Article  Google Scholar 

  19. Park, J., Tai, Y.W., Cho, D., So Kweon, I.: A unified approach of multi-scale deep and hand-crafted features for defocus estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1736–1745 (2017)

    Google Scholar 

  20. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  21. Sakurikar, P., Narayanan, P.: Composite focus measure for high quality depth maps. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1614–1622 (2017)

    Google Scholar 

  22. Shi, J., Xu, L., Jia, J.: Discriminative blur detection features. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2965–2972 (2014)

    Google Scholar 

  23. Shi, J., Xu, L., Jia, J.: Just noticeable defocus blur detection and estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 657–665 (2015)

    Google Scholar 

  24. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556, pp. 1–14 (2014)

  25. Son, H., Lee, J., Cho, S., Lee, S.: Single image defocus deblurring using kernel-sharing parallel atrous convolutions. In: Proceedings of the IEEE International Conference on Computer Vision (2021)

    Google Scholar 

  26. Su, B., Lu, S., Tan, C.L.: Blurred image region detection and classification. In: Proceedings of the 19th ACM International Conference on Multimedia, pp. 1397–1400 (2011)

    Google Scholar 

  27. Tai, Y.W., Brown, M.S.: Single image defocus map estimation using local contrast prior. In: 2009 16th IEEE International Conference on Image Processing (ICIP), pp. 1797–1800. IEEE (2009)

    Google Scholar 

  28. Tang, C., Liu, X., An, S., Wang, P.: BR\(^2\)Net: defocus blur detection via bidirectional channel attention residual refining network. IEEE Trans. Multimed. 23, 624–635 (2020)

    Article  Google Scholar 

  29. Tang, C., et al.: DeFusionNET: defocus blur detection via recurrently fusing and refining discriminative multi-scale deep features. IEEE Trans. Pattern Anal. Mach. Intell. PP(99), 1 (2020)

    Google Scholar 

  30. Tang, C., et al.: R\(^2\)MRF: defocus blur detection via recurrently refining multi-scale residual features. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 12063–12070 (2020)

    Google Scholar 

  31. Tang, C., Wu, J., Hou, Y., Wang, P., Li, W.: A spectral and spatial approach of coarse-to-fine blurred image region detection. IEEE Signal Process. Lett. 23(11), 1652–1656 (2016)

    Article  Google Scholar 

  32. Tang, C., Zhu, X., Liu, X., Wang, L., Zomaya, A.: DeFusionNet: defocus blur detection via recurrently fusing and refining multi-scale deep features. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2700–2709 (2019)

    Google Scholar 

  33. Tao, X., Gao, H., Shen, X., Wang, J., Jia, J.: Scale-recurrent network for deep image deblurring. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8174–8182 (2018)

    Google Scholar 

  34. Wang, J., Li, X., Yang, J.: Stacked conditional generative adversarial networks for jointly learning shadow detection and shadow removal. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1788–1797 (2018)

    Google Scholar 

  35. Wang, X., Yu, K., Dong, C., Loy, C.C.: Recovering realistic texture in image super-resolution by deep spatial feature transform. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 606–615 (2018)

    Google Scholar 

  36. Xiong, W., et al.: Foreground-aware image inpainting. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5840–5848 (2019)

    Google Scholar 

  37. Yi, X., Eramian, M.: LBP-based segmentation of defocus blur. IEEE Trans. Image Process. 25(4), 1626–1638 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  38. Zhang, K., Zuo, W., Zhang, L.: Learning a single convolutional super-resolution network for multiple degradations. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3262–3271 (2018)

    Google Scholar 

  39. Zhang, N., Yan, J.: Rethinking the defocus blur detection problem and a real-time deep DBD model. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12355, pp. 617–632. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58607-2_36

    Chapter  Google Scholar 

  40. Zhang, S., Shen, X., Lin, Z., Mech, R., Costeira, J.P., Moura, J.M.F.: Learning to understand image blur. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 6586–6595 (2018)

    Google Scholar 

  41. Zhang, X., Wang, R., Jiang, X., Wang, W., Gao, W.: Spatially variant defocus blur map estimation and deblurring from a single image. J. Vis. Commun. Image Represent. 35, 257–264 (2016)

    Article  Google Scholar 

  42. Zhang, Z., Liu, Y., Xiong, Z., Li, J., Zhang, M.: Focus and blurriness measure using reorganized DCT coefficients for an autofocus application. IEEE Trans. Circuits Syst. Video Technol. 28(1), 15–30 (2016)

    Article  Google Scholar 

  43. Zhao, F., Lu, H., Zhao, W., Yao, L.: Image-scale-symmetric cooperative network for defocus blur detection. IEEE Trans. Circuits Syst. Video Technol. 32(5), 2719–2731 (2021)

    Article  Google Scholar 

  44. Zhao, W., Hou, X., He, Y., Lu, H.: Defocus blur detection via boosting diversity of deep ensemble networks. IEEE Trans. Image Process. 30, 5426–5438 (2021)

    Article  Google Scholar 

  45. Zhao, W., Hou, X., Yu, X., He, Y., Lu, H.: Towards weakly-supervised focus region detection via recurrent constraint network. IEEE Trans. Image Process. 29, 1356–1367 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  46. Zhao, W., Shang, C., Lu, H.: Self-generated defocus blur detection via dual adversarial discriminators. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6933–6942 (2021)

    Google Scholar 

  47. Zhao, W., Zhao, F., Wang, D., Lu, H.: Defocus blur detection via multi-stream bottom-top-bottom fully convolutional network. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3080–3088 (2018)

    Google Scholar 

  48. Zhao, W., Zhao, F., Wang, D., Lu, H.: Defocus blur detection via multi-stream bottom-top-bottom network. IEEE Trans. Pattern Anal. Mach. Intell. 42(8), 1884–1897 (2020)

    Article  Google Scholar 

  49. Zhao, W., Zheng, B., Lin, Q., Lu, H.: Enhancing diversity of defocus blur detectors via cross-ensemble network. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 8905–8913 (2019)

    Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China under Grant Nos. 62176038 and U1903215, and Science and Technology Star of Dalian under Grant No. 2021RQ054.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenda Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhao, W., Wei, F., He, Y., Lu, H. (2022). United Defocus Blur Detection and Deblurring via Adversarial Promoting Learning. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13690. Springer, Cham. https://doi.org/10.1007/978-3-031-20056-4_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20056-4_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20055-7

  • Online ISBN: 978-3-031-20056-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics