Skip to main content

Large-Displacement 3D Object Tracking with Hybrid Non-local Optimization

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13682))

Included in the following conference series:

Abstract

Optimization-based 3D object tracking is known to be precise and fast, but sensitive to large inter-frame displacements. In this paper we propose a fast and effective non-local 3D tracking method. Based on the observation that erroneous local minimum are mostly due to the out-of-plane rotation, we propose a hybrid approach combining non-local and local optimizations for different parameters, resulting in efficient non-local search in the 6D pose space. In addition, a precomputed robust contour-based tracking method is proposed for the pose optimization. By using long search lines with multiple candidate correspondences, it can adapt to different frame displacements without the need of coarse-to-fine search. After the pre-computation, pose updates can be conducted very fast, enabling the non-local optimization to run in real time. Our method outperforms all previous methods for both small and large displacements. For large displacements, the accuracy is greatly improved (\(81.7\%\, \text {v.s.}\, 19.4\%\)). At the same time, real-time speed (>50 fps) can be achieved with only CPU. The source code is available at https://github.com/cvbubbles/nonlocal-3dtracking.

X. Tian and X. Lin—Equally contributed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arvo, J.: Fast random rotation matrices. In: Graphics gems III (IBM version), pp. 117–120. Elsevier (1992)

    Google Scholar 

  2. Choi, C., Christensen, H.I.: Real-time 3D model-based tracking using edge and keypoint features for robotic manipulation. In: IEEE International Conference on Robotics and Automation, pp. 4048–4055 (2010). https://doi.org/10.1109/ROBOT.2010.5509171

  3. Deng, X., Mousavian, A., Xiang, Y., Xia, F., Bretl, T., Fox, D.: PoseRBPF: a Rao-Blackwellized particle filter for 6-D object pose tracking. IEEE Trans. Rob. 37(5), 1328–1342 (2021). https://doi.org/10.1109/TRO.2021.3056043

    Article  Google Scholar 

  4. Drummond, T., Cipolla, R.: Real-time visual tracking of complex structures. IEEE Trans. Patt. Anal. Mach. Intell. 24(7), 932–946 (2002). https://doi.org/10.1109/TPAMI.2002.1017620

    Article  Google Scholar 

  5. Harris, C., Stennett, C.: Rapid - a video rate object tracker. In: BMVC (1990)

    Google Scholar 

  6. Hexner, J., Hagege, R.R.: 2D–3D pose estimation of heterogeneous objects using a region based approach. Int. J. Comput. Vis. 118(1), 95–112 (2016). https://doi.org/10.1007/s11263-015-0873-2

  7. Huang, H., Zhong, F., Qin, X.: Pixel-wise weighted region-based 3D object tracking using contour constraints. IEEE Trans. Visual. Comput. Graph. 1 (2021). https://doi.org/10.1109/TVCG.2021.3085197

  8. Huang, H., Zhong, F., Sun, Y., Qin, X.: An occlusion-aware edge-based method for monocular 3D object tracking using edge confidence. Comput. Graph. Forum 39(7), 399–409 (2020). https://doi.org/10.1111/cgf.14154

    Article  Google Scholar 

  9. Jain, P., Kar, P.: Non-convex optimization for machine learning. arXiv preprint arXiv:1712.07897 (2017)

  10. Kwon, J., Lee, H.S., Park, F.C., Lee, K.M.: A geometric particle filter for template-based visual tracking. IEEE Trans. Pattern Anal. Mach. Intell. 36(4), 625–643 (2013)

    Article  Google Scholar 

  11. Labbé, Y., Carpentier, J., Aubry, M., Sivic, J.: CosyPose: consistent multi-view multi-object 6D pose estimation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12362, pp. 574–591. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58520-4_34

    Chapter  Google Scholar 

  12. Lepetit, V., Fua, P.: Monocular model-based 3D tracking of rigid objects. Now Publishers Inc (2005)

    Google Scholar 

  13. Li, Y., Wang, G., Ji, X., Xiang, Y., Fox, D.: DeepIM: deep iterative matching for 6D pose estimation. In: Proceedings of the ECCV, pp. 683–698 (2018)

    Google Scholar 

  14. Marchand, E., Uchiyama, H., Spindler, F.: Pose estimation for augmented reality: a hands-on survey. IEEE Trans. Vis. Comput. Graph. 22(12), 2633–2651 (2016). https://doi.org/10.1109/TVCG.2015.2513408

    Article  Google Scholar 

  15. Peng, S., Liu, Y., Huang, Q., Zhou, X., Bao, H.: PVNet: pixel-wise voting network for 6DoF pose estimation. In: IEEE/CVF Conference on CVPR, pp. 4556–4565. IEEE, Long Beach, CA, USA, June 2019. https://doi.org/10.1109/CVPR.2019.00469

  16. Prisacariu, V., Reid, I.: PWP3D: real-time segmentation and tracking of 3D objects. In: Proceedings of the 20th British Machine Vision Conference (September 2009). https://doi.org/10.1007/s11263-011-0514-3

  17. Seo, B.K., Park, H., Park, J.I., Hinterstoisser, S., Ilic, S.: Optimal local searching for fast and robust textureless 3D object tracking in highly cluttered backgrounds. IEEE Trans. Vis. Comput. Graph. 20(1), 99–110 (2014). https://doi.org/10.1109/TVCG.2013.94

    Article  Google Scholar 

  18. Stoiber, M., Pfanne, M., Strobl, K.H., Triebel, R., Albu-Schaeffer, A.: A sparse gaussian approach to region-based 6DoF object tracking. In: Proceedings of the Asian Conference on Computer Vision (2020)

    Google Scholar 

  19. Stoiber, M., Pfanne, M., Strobl, K.H., Triebel, R., Albu-Schäffer, A.: SRT3D: a sparse region-based 3D object tracking approach for the real world. Int. J. Comput. Vis. 130(4), 1008–1030 (2022). https://doi.org/10.1007/s11263-022-01579-8

    Article  Google Scholar 

  20. Sun, X., Zhou, J., Zhang, W., Wang, Z., Yu, Q.: Robust monocular pose tracking of less-distinct objects based on contour-part model. IEEE Trans. Circuits Syst. Video Technol. 31(11), 4409–4421 (2021). https://doi.org/10.1109/TCSVT.2021.3053696

    Article  Google Scholar 

  21. Tjaden, H., Schwanecke, U., Schömer, E.: Real-time monocular segmentation and pose tracking of multiple objects. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 423–438. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_26

    Chapter  Google Scholar 

  22. Tjaden, H., Schwanecke, U., Schomer, E., Cremers, D.: A region-based gauss-newton approach to real-time monocular multiple object tracking. IEEE Trans. Pattern Anal. Mach. Intell. 41(8), 1797–1812 (2019). https://doi.org/10.1109/TPAMI.2018.2884990

    Article  Google Scholar 

  23. Tjaden, H., Schwanecke, U., Schömer, E.: Real-time monocular pose estimation of 3D objects using temporally consistent local color histograms. In: IEEE International Conference on Computer Vision (ICCV), pp. 124–132 (2017). https://doi.org/10.1109/ICCV.2017.23

  24. Vacchetti, L., Lepetit, V., Fua, P.: Combining edge and texture information for real-time accurate 3D camera tracking. In: IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 48–56 (2004). https://doi.org/10.1109/ISMAR.2004.24

  25. Wen, B., Bekris, K.: BundleTrack: 6D pose tracking for novel objects without instance or category-level 3D models. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 8067–8074. IEEE (2021)

    Google Scholar 

  26. Wen, B., Mitash, C., Ren, B., Bekris, K.E.: se(3)-TrackNet: data-driven 6d pose tracking by calibrating image residuals in synthetic domains. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 10367–10373. IEEE (2020)

    Google Scholar 

  27. Xiang, Y., Schmidt, T., Narayanan, V., Fox, D.: PoseCNN: a convolutional neural network for 6D object pose estimation in cluttered scenes. In: Robotics: Science and Systems XIV. Robotics: Science and Systems Foundation, June 2018. https://doi.org/10.15607/RSS.2018.XIV.019

  28. Zhang, J., Zhu, C., Zheng, L., Xu, K.: ROSEFusion: random optimization for online dense reconstruction under fast camera motion. ACM Trans. Graph. (TOG) 40(4), 1–17 (2021)

    Google Scholar 

  29. Zhong, L., Zhao, X., Zhang, Y., Zhang, S., Zhang, L.: Occlusion-aware region-based 3D pose tracking of objects with temporally consistent polar-based local partitioning. IEEE Trans. Image Process. 29, 5065–5078 (2020). https://doi.org/10.1109/TIP.2020.2973512

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by NSFC project 62172260, and the Industrial Internet Innovation and Development Project in 2019 of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fan Zhong .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 8858 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tian, X., Lin, X., Zhong, F., Qin, X. (2022). Large-Displacement 3D Object Tracking with Hybrid Non-local Optimization. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13682. Springer, Cham. https://doi.org/10.1007/978-3-031-20047-2_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20047-2_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20046-5

  • Online ISBN: 978-3-031-20047-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics