Skip to main content

Abstract

In this chapter, the discussion of the importance of a change in social behavior that needs to be guided, by the principles developed through the scientific investigation and findings to analyze the environmental threat is presented. The difference in magnitude between emissions (Gton) and utilization (Mton) is a measure of the required efforts for developing solutions. In previous chapters, the basis to claim that there is no universal/single solution to the emissions problem was set. Multiple technologies are required and need to be developed, within a holistic set of criteria. The needs, challenges and existing gaps identified in the CU advances discussed in Chap. 2 are collected in this chapter. Implementation of technologies should take place, by circular integration, within CBMs. A vision of the aspirational (better) future is also offered in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D.G. Victor, Deep decarbonization: a realistic way forward on climate change. Yale Environment 360 (2020), p. 8. https://e360.yale.edu/features/deep-decarbonization-a-realistic-way-forward-on-climate-change

  2. D.G. Victor et al., Accelerating the low carbon transition: the case for stronger, more targeted and coordinated international action. UK Government Department for Business (2019), p. 71. https://www.brookings.edu/wp-content/uploads/2019/12/Coordinatedactionreport.pdf

  3. Mckinsey & Company Global energy perspective—executive summary. USA. (2022), p. 28. https://www.mckinsey.com/~/media/McKinsey/Industries/Oil%20and%20Gas/Our%20Insights/Global%20Energy%20Perspective%202022/Global-Energy-Perspective-2022-Executive-Summary.pdf

  4. P. Brandl et al., Beyond 90% capture: possible, but at what cost? Int. J. Greenh. Gas Control. 105(103239), 16 (2021). https://doi.org/10.1016/j.ijggc.2020.103239

  5. J.F. Múnera et al., Combined oxidation and reforming of methane to produce pure H2 in a membrane reactor. Chem. Eng. J. 161(1), 204–211 (2010). https://doi.org/10.1016/j.cej.2010.04.022

    Article  Google Scholar 

  6. Y. Li et al., Oxidative reformings of methane to syngas with steam and CO2 catalyzed by metallic Ni based monolithic catalysts. Catal. Commun. 9(6), 1040–1044 (2008). https://doi.org/10.1016/j.catcom.2007.10.003

    Article  Google Scholar 

  7. National Research Council, Advancing the Science of Climate Change. (The National Academies Press, Washington, 2010), p. 526. https://doi.org/10.17226/12782

  8. A. Hayes, Value-added (2022), https://www.investopedia.com/terms/v/valueadded.asp. Accessed 22 April

  9. A. Raskin, N. Mellquist, The new industrial revolution: de-verticalization on a global scale, (2005), https://www.alliancebernstein.com/cmsobjectabd/pdf/research_whitepaper/r28453_deverticalization_051215.pdf. Accessed April 2022

  10. S. Pianta et al., Carbon capture and storage in the United states: Perceptions, preferences, and lessons for policy. Energy Policy 151(112149), 8 (2021). https://doi.org/10.1016/j.enpol.2021.112149

  11. R. Hanna et al., Emergency deployment of direct air capture as a response to the climate crisis. Nat. Commun. 12(1), 368, 13 (2021). https://doi.org/10.1038/s41467-020-20437-0

  12. S. Budinis, Direct air capture, report in preparation (2021), https://www.iea.org/reports/direct-air-capture. Accessed March 2022

  13. D.W. Keith et al., A process for capturing CO2 from the atmosphere. Joule 2(8), 1573–1594 (2018). https://doi.org/10.1016/j.joule.2018.05.006

    Article  Google Scholar 

  14. N. Mcqueen et al., A review of direct air capture (DAC): scaling up commercial technologies and innovating for the future. Prog. Energy 3(3), #032001, 23 (2021). https://doi.org/10.1088/2516-1083/abf1ce

  15. V. Rizos et al., The role of business in the circular economy: Markets, processes and enabling policies. Centre for European Policy Studies. Brussels, Belgium (2018), p. 80. www.ceps.eu

  16. M.A. Brown et al., Carbon lock-in: Barriers to deploying climate change mitigation technologies, in Barriers to Climate Change Mitigation Technologies and Energy Efficiency (Nova Science Publishers, Inc. 2011), pp. 1–166

    Google Scholar 

  17. World Energy Outlook Team, The role of critical minerals in clean energy transitions. IEA. Paris, France (2022), p. 287. https://www.iea.org/reports/the-role-of-critical-minerals-in-clean-energy-transitions/executive-summary

  18. W.J.J. Huijgen et al., Energy consumption and net CO2 sequestration of aqueous mineral carbonation. Ind. Eng. Chem. Res. 45(26), 9184–9194 (2006). https://doi.org/10.1021/ie060636k

    Article  Google Scholar 

  19. R. Zevenhoven et al., Carbon storage by mineralisation (CSM): Serpentinite rock carbonation via Mg(oh)2 reaction intermediate without CO2 pre-separation, in Proceedings of the 11th International Conference on Greenhouse Gas Control Technologies, GHGT 2012, vol. 37 (Kyoto, Elsevier Ltd, 2013), pp. 5945–5954. https://doi.org/10.1016/j.egypro.2013.06.521

  20. R.M. Santos et al., Integrated mineral carbonation reactor technology for sustainable carbon dioxide sequestration: ‘CO2 energy reactor’. in Proceedings of the 11th International Conference on Greenhouse Gas Control Technologies, GHGT 2012, vol. 37 (Kyoto, Elsevier Ltd, 2013) pp. 5884–5891. https://doi.org/10.1016/j.egypro.2013.06.513

  21. M. Mazzotti et al., Mineral carbonation and industrial uses of carbon dioxide, in Special report on carbon dioxide capture and storage, in Intergovernmental Panel on Climate Change (IPCC), ed. by B. Metz, et al. (Cambridge University Press, UK, 2005), pp. 319–338

    Google Scholar 

  22. A.A. Olajire, A review of mineral carbonation technology in sequestration of CO2. J. Petrol. Sci. Eng. 109, 364–392 (2013). https://doi.org/10.1016/j.petrol.2013.03.013

    Article  Google Scholar 

  23. W.K. O’Connor et al., Carbon dioxide sequestration by direct mineral carbonation: Process mineralogy of feed and products. Miner. Metall. Process. 19(2), 95–101 (2002). https://doi.org/10.1007/bf03403262

    Article  Google Scholar 

  24. W.K. O’Connor et al., Aqueous mineral carbonation. DOE/ARC-TR-04–002 Report. National Energy Technology Laboratory. Albany, Oregon. USA. Mar 15, 2005. 463 pp

    Google Scholar 

  25. W.K. O’Connor et al., Carbon dioxide sequestration by ex-situ mineral carbonation. Technology 7(S), 115–123 (1999)

    Google Scholar 

  26. P.S. Newall et al., CO2 storage as carbonate minerals. PH3/17 Report. IEA GHG; CSMAConsultants Ltd. Cornwall, UK. February 2000. p. 185. https://ieaghg.org/docs/General_Docs/Reports/Ph3_17%20Storage%20as%20carbonates.pdf.

  27. S. Kaiser, S. Bringezu, Use of carbon dioxide as raw material to close the carbon cycle for the german chemical and polymer industries. J. Clean. Prod. 271 (2020). https://doi.org/10.1016/j.jclepro.2020.122775

  28. International Energy Agency, Net zero by 2050, a roadmap for the global energy sector. IEA. Paris, France. (December 2021), p. 224. https://www.iea.org/reports/net-zero-by-2050

  29. M.R. Goldwasser et al., Combined methane reforming in presence of CO2 and O2 over LaFe1-xCoxO3 mixed-oxide perovskites as catalysts precursors. Catal. Today 107–108, 106–113 (2005). https://doi.org/10.1016/j.cattod.2005.07.073

    Article  Google Scholar 

  30. C. Jensen, M.S. Duyar, Thermodynamic analysis of dry reforming of methane for valorization of landfill gas and natural gas. Energy Technol. 9(7) (2021). https://doi.org/10.1002/ente.202100106

  31. J. Hunt et al., Microwave-specific enhancement of the carbon–carbon dioxide (Boudouard) reaction. J. Phys. Chem. C 117(51), 26871–26880 (2013). https://doi.org/10.1021/jp4076965

    Article  Google Scholar 

  32. A.T. Bell, The impact of nanoscience on heterogeneous catalysis. Science 299(5613), 1688–1691 (2003). https://doi.org/10.1126/science.1083671

    Article  Google Scholar 

  33. A. Alcasabas et al., A comparison of different approaches to the conversion of carbon dioxide into useful products: Part I CO2 reduction by electrocatalytic, thermocatalytic and biological routes. Johns. Matthey Technol. Rev. 65(2), 180–196 (2021). https://doi.org/10.1595/205651321x16081175586719

    Article  Google Scholar 

  34. J.E. O’brien et al., High-temperature electrolysis for large-scale hydrogen and syngas production from nuclear energy—summary of system simulation and economic analyses. Int. J. Hydrog. Energy 35(10), 4808–4819 (2010). https://doi.org/10.1016/j.ijhydene.2009.09.009

  35. S. Hernández et al., Syngas production from electrochemical reduction of CO2: current status and prospective implementation. Green Chem. 19(10), 2326–2346 (2017). https://doi.org/10.1039/C7GC00398F

    Article  Google Scholar 

  36. R. Küngas, Review—electrochemical CO2 reduction for CO production: Comparison of low- and high-temperature electrolysis technologies. J. Electrochem. Soc. 167(4), 044508 (2020). https://doi.org/10.1149/1945-7111/ab7099

    Article  Google Scholar 

  37. R. Küngas et al., Systematic lifetime testing of stacks in CO2 electrolysis. ECS Trans. 78(1), 2895–2905 (2017)

    Article  Google Scholar 

  38. J. Artz et al., Sustainable conversion of carbon dioxide: an integrated review of catalysis and life cycle assessment. Chem. Rev. 118(2), 434–504 (2018). https://doi.org/10.1021/acs.chemrev.7b00435

    Article  Google Scholar 

  39. H. Fang et al., Advancements in development of chemical-looping combustion: A review. Int. J. Chem. Eng. 2009, 710515 (2009). https://doi.org/10.1155/2009/710515

    Article  Google Scholar 

  40. M. Osman et al., Review of pressurized chemical looping processes for power generation and chemical production with integrated CO2 capture. Fuel Process. Technol. 214(106684), 29 (2021). https://doi.org/10.1016/j.fuproc.2020.106684

  41. M. Aresta, in The Carbon Dioxide Problem, in An Economy Based on Carbon Dioxide and Water, Potential of Large Scale Carbon Dioxide Utilization, ed. by M.K. Aresta, Iftekhar, S. Kawi, (Springer, Switzerland AG, 2019)

    Google Scholar 

  42. Aresta, M. Carbon dioxide as chemical feedstock. Carbon dioxide as chemical feedstock. (Wiley-VCH, 2010), p. 394. https://doi.org/10.1002/9783527629916

  43. M. Aresta et al., An Economy Based on Carbon Dioxide and Water, Potential of Large Scale Carbon Dioxide Utilization, ed. by M. Aresta, (Springer, Switzerland AG, 2019), p. 436. https://doi.org/10.1007/978-3-030-15868-2

  44. S. Saeidi et al., Hydrogenation of CO2 to value-added products - a review and potential future developments. J. CO2 Util. 5, 66–81 (2014). https://doi.org/10.1016/j.jcou.2013.12.005

  45. G.A. Olah et al., Beyond Oil and Gas: The Methanol Economy, 2nd edn. (Wiley-VCH, 2009), p. 334. https://doi.org/10.1002/9783527627806

  46. A. Elmekawy et al., Technological advances in CO2 conversion electro-biorefinery: a step toward commercialization. Biores. Technol. 215, 357–370 (2016). https://doi.org/10.1016/j.biortech.2016.03.023

    Article  Google Scholar 

  47. M. Seemann, H. Thunman, Methane synthesis, in Substitute Natural Gas from Waste, ed. by M. Materazzi, P.U. Foscolo, (Academic Press, 2019), pp. 221–243. https://doi.org/10.1016/B978-0-12-815554-7.00009-X

  48. C. Bassano et al., P2G movable modular plant operation on synthetic methane production from CO2 and hydrogen from renewables sources. Fuel 253, 1071–1079 (2019). https://doi.org/10.1016/j.fuel.2019.05.074

    Article  Google Scholar 

  49. K. Stangeland et al., CO2 methanation: the effect of catalysts and reaction conditions. Energy Procedia 105, 2022–2027 (2017). https://doi.org/10.1016/j.egypro.2017.03.577

    Article  Google Scholar 

  50. I. García-García et al., Power-to-gas: storing surplus electrical energy. Study of catalyst synthesis and operating conditions. Int. J. Hydrog. Energy 43(37), 17737–17747 (2018). https://doi.org/10.1016/j.ijhydene.2018.06.192

  51. J. Uebbing et al., Exergetic assessment of CO2 methanation processes for the chemical storage of renewable energies. Appl. Energy 233–234, 271–282 (2019). https://doi.org/10.1016/j.apenergy.2018.10.014

    Article  Google Scholar 

  52. J. Bremer et al., CO2 methanation: optimal start-up control of a fixed-bed reactor for power-to-gas applications. AIChE J. 63(1), 23–31 (2017). https://doi.org/10.1002/aic.15496

    Article  Google Scholar 

  53. S. Falcinelli, Fuel production from waste CO2 using renewable energies. Catal. Today 348, 95–101 (2020). https://doi.org/10.1016/j.cattod.2019.08.041

    Article  Google Scholar 

  54. J. Klankermayer, W. Leitner, Love at second sight for CO2 and H2 in organic synthesis. Science 350(6261), 629–630 (2015). https://doi.org/10.1126/science.aac7997

    Article  Google Scholar 

  55. F. Wang et al., Higher atmospheric CO2 levels favor C3 plants over C4 plants in utilizing ammonium as a nitrogen source. Front. Plant Sci. 11 (2020). https://doi.org/10.3389/fpls.2020.537443

  56. R.C. Pullar et al., A review of solar thermochemical CO2 splitting using ceria-based ceramics with designed morphologies and microstructures. Front. Chem. 7, 34 (2019). https://doi.org/10.3389/fchem.2019.00601

  57. M. Levy et al., Solar energy storage via a closed-loop chemical heat pipe. Sol. Energy 50(2), 179–189 (1993). https://doi.org/10.1016/0038-092X(93)90089-7

    Article  Google Scholar 

  58. M. Aresta et al., The changing paradigm in CO2 utilization. J. CO2 Util. 3–4, 65–73 (2013). https://doi.org/10.1016/j.jcou.2013.08.001

  59. S. Christy et al., Recent progress in the synthesis and applications of glycerol carbonate. Curr. Opin. Green Sustain. Chem. 14, 99–107 (2018). https://doi.org/10.1016/j.cogsc.2018.09.003

    Article  Google Scholar 

  60. M.M. Ramirez-Corredores et al., Radiation-induced chemistry of carbon dioxide: a pathway to close the carbon loop for a circular economy. Front. Energy Res. 8(108), 17 (2020). https://doi.org/10.3389/fenrg.2020.00108

  61. J.A. Rodríguez-Sarasty et al., Deep decarbonization in northeastern North America: The value of electricity market integration and hydropower. Energy Policy 152 (2021). https://doi.org/10.1016/j.enpol.2021.112210

  62. National Research Council Carbon Management: Implications for R&D in the Chemical Sciences and Technology. (The National Academies Press, Washington, DC, 2001), p. 236. https://doi.org/10.17226/10153

  63. A.P.M. Velenturf, P. Purnell, Principles for a sustainable circular economy. Sustain. Prod. Consum. 27, 1437–1457 (2021). https://doi.org/10.1016/j.spc.2021.02.018

    Article  Google Scholar 

  64. S. Fuss et al., Negative emissions—part 2: Costs, potentials and side effects. Environ. Res. Lett. 13(6) (2018). https://doi.org/10.1088/1748-9326/aabf9f

  65. J. Forster et al., Mapping feasibilities of greenhouse gas removal: Key issues, gaps and opening up assessments. Glob. Environ. Chang. 63 (2020). https://doi.org/10.1016/j.gloenvcha.2020.102073

  66. K. Dooley, S. Kartha, Land-based negative emissions: risks for climate mitigation and impacts on sustainable development. Int. Environ. Agreem: Polit. Law Econ. 18(1), 79–98 (2018). https://doi.org/10.1007/s10784-017-9382-9

    Article  Google Scholar 

  67. M. Brander et al., Carbon accounting for negative emissions technologies. Clim. Policy 21(5), 699–717 (2021). https://doi.org/10.1080/14693062.2021.1878009

    Article  Google Scholar 

  68. B. Metz et al., Carbon dioxide capture and storage. Special Report. Intergovernmental Panel on Climate Change (IPCC), (Cambridge University Press, UK 2005), p. 442

    Google Scholar 

  69. T.T.D. Cruz et al., Life cycle assessment of carbon capture and storage/utilization: from current state to future research directions and opportunities. Int. J. Greenh. Gas Control 108(103309), 13 (2021). https://doi.org/10.1016/j.ijggc.2021.103309

  70. F. Gassner, W. Leitner, Hydrogenation of carbon dioxide to formic acid using water-soluble rhodium catalyststs. J. Chem. Soc. Chem. Commun. 19, 1465–1466 (1993). https://doi.org/10.1039/C39930001465

    Article  Google Scholar 

  71. Z.Z. Yang et al., CO2 capture and activation by superbase/polyethylene glycol and its subsequent conversion. Energy Environ. Sci. 4(10), 3971–3975 (2011). https://doi.org/10.1039/c1ee02156g

    Article  Google Scholar 

  72. S.M. Kim et al., Integrated CO2 capture and conversion as an efficient process for fuels from greenhouse gases. ACS Catal. 8(4), 2815–2823 (2018). https://doi.org/10.1021/acscatal.7b03063

    Article  Google Scholar 

  73. L. Liu et al., Integrated CO2 capture and photocatalytic conversion by a hybrid adsorbent/photocatalyst material. Appl. Catal. B 179, 489–499 (2015). https://doi.org/10.1016/j.apcatb.2015.06.006

    Article  Google Scholar 

  74. X. Wang, C. Song, Carbon capture from flue gas and the atmosphere: a perspective. Front. Energy Res. 8, 24 (2020). https://doi.org/10.3389/fenrg.2020.560849

  75. Z. Zhou et al., 2d-layered Ni–MgO–Al2O3 nanosheets for integrated capture and methanation of CO2. Chemsuschem 13(2), 360–368 (2020). https://doi.org/10.1002/cssc.201902828

    Article  Google Scholar 

  76. H.B. Vakil, P.G. Kosky, Design analyses of a methane-based chemical heat pipe, in Proceedings of the 11th Intersoc Energy Conversion Engineering Conference (New York, NY, September 12–17, 1976). AIChE. 1 SAE, 659–664

    Google Scholar 

  77. A. Tripodi et al., Carbon dioxide methanation: design of a fully integrated plant. Energy Fuels 34(6), 7242–7256 (2020). https://doi.org/10.1021/acs.energyfuels.0c00580

    Article  Google Scholar 

  78. A. Álvarez et al., CO2 activation over catalytic surfaces. ChemPhysChem 18(22), 3135–3141 (2017). https://doi.org/10.1002/cphc.201700782

    Article  Google Scholar 

  79. H. Yang et al., A review of the catalytic hydrogenation of carbon dioxide into value-added hydrocarbons. Catal. Sci. Technol. 7(20), 4580–4598 (2017). https://doi.org/10.1039/c7cy01403a

    Article  Google Scholar 

  80. S. Verma et al., A gross-margin model for defining technoeconomic benchmarks in the electroreduction of CO2. Chemsuschem 9(15), 1972–1979 (2016). https://doi.org/10.1002/cssc.201600394

    Article  Google Scholar 

  81. T. Burdyny, W.A. Smith, CO2 reduction on gas-diffusion electrodes and why catalytic performance must be assessed at commercially-relevant conditions. Energy Environ. Sci. 12(5), 1442–1453 (2019). https://doi.org/10.1039/C8EE03134G

    Article  Google Scholar 

  82. J. Durrani, Can catalysis save us from our CO2 problem?. (2019). https://www.chemistryworld.com/news/can-catalysis-save-us-from-our-co2-problem/3010555.article

  83. R.J. Lim et al., A review on the electrochemical reduction of CO2 in fuel cells, metal electrodes and molecular catalysts. Catal. Today 233, 169–180 (2014). https://doi.org/10.1016/j.cattod.2013.11.037

    Article  Google Scholar 

  84. Y. Zhang et al., Mechanistic understanding of the electrocatalytic CO2 reduction reaction – new developments based on advanced instrumental techniques. Nano Today 31, 100835 (2020). https://doi.org/10.1016/j.nantod.2019.100835

    Article  Google Scholar 

  85. S. Baldwin et al., An assessment of energy technologies and research opportunities. (U.S. Department of Energy. Washington, DC. USA, 2015), p. 860

    Google Scholar 

  86. D. Sandalow et al., Carbon dioxide utilization roadmap 2.0. ICEF. November (2017), p. 30. https://www.icef.go.jp/platform/article_detail.php?article__id=171

  87. S. Voitko et al., Decarbonisation of the economy through the introduction of innovative technologies into the energy sector, in Proceedings of the International Conference on Sustainable, Circular Management and Environmental Engineering, ISCMEE 2021. EDP Sciences. 255(01016), p. 11. https://doi.org/10.1051/e3sconf/202125501016

  88. W.M. Chen, H. Kim, Circular economy and energy transition: a nexus focusing on the non-energy use of fuels. Energy and Environment 30(4), 586–600 (2019). https://doi.org/10.1177/0958305X19845759

    Article  Google Scholar 

  89. S. Baldwin et al., Advancing clean electric power technologies, technology assessments, in Quadrennial Technology ReviewAn Assessment of Energy Technologies and Research Opportunities (U. S. Department of Energy, Washington, DC. USA, 2015), pp. 100–143

    Google Scholar 

  90. H. Ohno et al., Detailing the economy-wide carbon emission reduction potential of post-consumer recycling. Resour. Conserv. Recycl. 166 (2021). https://doi.org/10.1016/j.resconrec.2020.105263

  91. L. Zhao et al., Drivers of household decarbonization: decoupling and decomposition analysis. J. Clean. Prod. 289 (2021). https://doi.org/10.1016/j.jclepro.2020.125154

  92. M. Isik et al., Challenges in the CO2 emissions of the Turkish power sector: Evidence from a two-level decomposition approach. Util. Policy 70(101227), 9 (2021) https://doi.org/10.1016/j.jup.2021.101227

  93. Y. Ni et al., Novel integrated agricultural land management approach provides sustainable biomass feedstocks for bioplastics and supports the uk’s ‘net-zero’ target. Environ. Res. Lett. 16(1), 014023, 11 (2021). https://doi.org/10.1088/1748-9326/abcf79

  94. A. Foss et al., NRIC integrated energy systems demonstration pre-conceptual designs. INL EXT-21–61413 Report. Idaho National Laboratory, National Reactor Innovation Center. Idaho Falls, ID. USA. April, 2021, p. 75. https://nric.inl.gov/wp-content/uploads/2021/06/NRIC-IES-Demonstration-Pre-conceptual-Designs-Report-1.pdf.

  95. K. Derviş, S. Strauss, The decarbonization paradox (2021), p. 4. https://www.brookings.edu/opinions/the-decarbonization-paradox/. Accessed August 2021.

  96. V. Smil, Energy myths and realities: bringing science to the energy policy debate. (AEI Press, Washington, D.C. USA, 2010), p 212

    Google Scholar 

  97. Deloitte, The 2030 decarbonization challenge: the path to the future of energy. Deloitte Global. (2020), p. 30. https://www2.deloitte.com/content/dam/Deloitte/global/Documents/Energy-and-Resources/gx-eri-decarbonization-report.pdf

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ramirez-Corredores, M.M., Goldwasser, M.R., Falabella de Sousa Aguiar, E. (2023). Perspectives and Future Views. In: Decarbonization as a Route Towards Sustainable Circularity. SpringerBriefs in Applied Sciences and Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-19999-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19999-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19998-1

  • Online ISBN: 978-3-031-19999-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics