Skip to main content

An Improved Method for Correcting the Readings of CCD Arrays for Spectroscopy in the Visible and Near Infrared Range and Its Application in Plant Agriculture

  • Conference paper
  • First Online:
Intelligent Computing & Optimization (ICO 2022)

Abstract

The article is concerned with the use of spectrometers to assess the condition of plants. The possibility of saving due to the use of low-cost versions of CCD (charge-coupled device) arrays in spectrometers is considered. The standard algorithm for the CCD array calibration has been improved, considering lower accuracy of budget versions of CCD arrays. After calibration had been made, laboratory researches were carried out with various plants and the results were compared with a reference device. It is concluded that it is possible to achieve acceptable results if the modified calibration algorithm is used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kirchhoff, G.R., Bunsen, R.W.: Chemical analysis by spectrum-observations. London, Edinb. Dublin Philos. Mag. J. Sci. 20(131), 88–109 (1860). https://doi.org/10.1080/14786446008642913

    Article  Google Scholar 

  2. Nicholson, J.W.: The Constitution of the Solar Corona II. Mon. Not. R. Astron. Soc. 72(8), 677–693 (1912). https://doi.org/10.1093/mnras/72.8.677

    Article  Google Scholar 

  3. Nicholson, J.W.: The Constitution of the Solar Corona lll. Mon. Not. R. Astron. Soc. 72(9), 729–740 (1912). https://doi.org/10.1093/mnras/72.9.729

    Article  Google Scholar 

  4. Shull, C.A.: A spectrophotometric study of reflection of light from leaf surfaces. Bot. Gaz. 87(5), 583–607 (1929). https://doi.org/10.1086/333965

    Article  Google Scholar 

  5. Rabideau, G.S., French, C.S., Holt, A.S.: The absorption and reflection spectra of leaves, chloroplast suspensions, and chloroplast fragments as measured in an Ulbricht sphere. Am. J. Bot. 33, 769–777 (1946). https://doi.org/10.1002/j.1537-2197.1946.tb12939.x

    Article  Google Scholar 

  6. Gates, D.M., Keegan, H.J., Schleter, J.C., Weidner, V.R.: Spectral Properties of Plants. Appl. Opt. 4(1), 11–20 (1965). https://doi.org/10.1364/AO.4.000011

    Article  Google Scholar 

  7. Calvin, M., Androes, G.M.: Primary quantum conversion in photosynthesis: low-temperature photoparamagnetism bespeaks electron transfer and migration as the earliest event. Science 138, 867–873 (1962). https://doi.org/10.1126/science.138.3543.867

    Article  Google Scholar 

  8. Glick, H., Lacroix, L.J., Shaykewich, C.F., Brach, E.J., Bellauthors, W.C.: Species and cultivar discrimination of cereals by field spectroscopy. Can. J. Plant Sci. 60(1), 69–77 (1980). https://doi.org/10.4141/cjps80-010

    Article  Google Scholar 

  9. Bahrami, M., Mobasheri, M.R.: Plant species determination by coding leaf reflectance spectrum and its derivatives. Eur. J. Remote Sens. 53(1), 258–273 (2020). https://doi.org/10.1080/22797254.2020.1816501

    Article  Google Scholar 

  10. Bajwa, S., Rupe, J., Mason, J.: Soybean disease monitoring with leaf reflectance. Remote Sens. 9(2), 127 (2017). https://doi.org/10.3390/rs9020127

    Article  Google Scholar 

  11. Shi, R., Sun, J.: Estimating leaf biochemical information from leaf reflectance spectrum using artificial neural network, In: International Conference on Machine Learning and Cybernetics, pp. 2224–2228, (2007) https://doi.org/10.1109/ICMLC.2007.4370515

  12. Abunyewa, A.A., Ferguson, R.B., Wortmann, C.S., Mason, S.C.: Grain sorghum leaf reflectance and nitrogen status. Afr. J. Agric. Res. 11(10), 825–836 (2016). https://doi.org/10.5897/AJAR2015.10495

    Article  Google Scholar 

  13. Vilfan, N., et al.: Extending Fluspect to simulate xanthophyll driven leaf reflectance dynamics. Remote Sens. Environ. 211, 345–356 (2018). https://doi.org/10.1016/j.rse.2018.04.012

    Article  Google Scholar 

  14. Gutman, G.G.: Vegetation indices from AVHRR: an update and future prospects. Remote Sens. Environ. 35(2–3), 121–136 (1991). https://doi.org/10.1016/0034-4257(91)90005-Q

    Article  Google Scholar 

  15. Zheng, G., Moskal, L.M.: Retrieving leaf area index (LAI) using remote sensing: theories. Methods Sens. Sens. 9, 2719–2745 (2009). https://doi.org/10.3390/s90402719

    Article  Google Scholar 

  16. Turner, D.P., Cohen, W.B., Kennedy, R.E., Fassnacht, K.S., Briggs, J.M.: Relationships between leaf area index and lands at TM spectral vegetation indices across three temperate zone sites. Remote Sens. Environ. 70(1), 52–68 (1999). https://doi.org/10.1016/S0034-4257(99)00057-7

    Article  Google Scholar 

  17. Nishida, K., Nemani, R.R., Glassy, J.M., Running, S.W.: Development of an evapotranspiration index from Aqua/MODIS for monitoring surface moisture status. IEEE Trans. Geosci. Remote Sens. 41(2), 493–501 (2003). https://doi.org/10.1109/TGRS.2003.811744

    Article  Google Scholar 

  18. Ollinger, S.V.: Sources of variability in canopy reflectance and the convergent properties of plants. New Phytol. 189, 375–394 (2011). https://doi.org/10.1111/j.1469-8137.2010.03536.x

    Article  Google Scholar 

  19. Pravilov, A.M.: Radiometry in Modern Scientific Experiments, Springer-Verlag. Wien (2011). https://doi.org/10.1007/978-3-7091-0104-9

    Article  Google Scholar 

  20. Greben, A.S., Krasovskaya, I.G.: Analysis of the main methods for forecasting yields using space monitoring data, in relation to grain crops in the steppe zone of Ukraine, Ecological Safety and Balanced Use of Resources, 1(7), 170–180 (2013) https://ebzr.nung.edu.ua/index.php/ebzr/article/view/280

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey Dolgalev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dolgalev, A., Smirnov, A., Proshkin, Y., Panchenko, V. (2023). An Improved Method for Correcting the Readings of CCD Arrays for Spectroscopy in the Visible and Near Infrared Range and Its Application in Plant Agriculture. In: Vasant, P., Weber, GW., Marmolejo-Saucedo, J.A., Munapo, E., Thomas, J.J. (eds) Intelligent Computing & Optimization. ICO 2022. Lecture Notes in Networks and Systems, vol 569. Springer, Cham. https://doi.org/10.1007/978-3-031-19958-5_70

Download citation

Publish with us

Policies and ethics