Skip to main content

Data Efficient 3D Learner via Knowledge Transferred from 2D Model

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13689))

Included in the following conference series:

Abstract

Collecting and labeling the registered 3D point cloud is costly. As a result, 3D resources for training are typically limited in quantity compared to the 2D images counterpart. In this work, we deal with the data scarcity challenge of 3D tasks by transferring knowledge from strong 2D models via RGB-D images. Specifically, we utilize a strong and well-trained semantic segmentation model for 2D images to augment RGB-D images with pseudo-label. The augmented dataset can then be used to pre-train 3D models. Finally, by simply fine-tuning on a few labeled 3D instances, our method already outperforms existing state-of-the-art that is tailored for 3D label efficiency. We also show that the results of mean-teacher and entropy minimization can be improved by our pre-training, suggesting that the transferred knowledge is helpful in semi-supervised setting. We verify the effectiveness of our approach on two popular 3D models and three different tasks. On ScanNet official evaluation, we establish new state-of-the-art semantic segmentation results on the data-efficient track.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boulch, A.: Convpoint: continuous convolutions for point cloud processing. Comput. Graph. 88, 24–34 (2020)

    Google Scholar 

  2. Caesar, H., Uijlings, J.R.R., Ferrari, V.: Coco-stuff: thing and stuff classes in context. In: CVPR, pp. 1209–1218 (2018)

    Google Scholar 

  3. Caron, M., Misra, I., Mairal, J., Goyal, P., Bojanowski, P., Joulin, A.: Unsupervised learning of visual features by contrasting cluster assignments. In: NeurIPS (2020)

    Google Scholar 

  4. Chang, A.X., Dai, A., Funkhouser, T.A., Halber, M., Nießner, M., Savva, M., Song, S., Zeng, A., Zhang, Y.: Matterport3d: Learning from RGB-D data in indoor environments. In: 3DV. pp. 667–676 (2017)

    Google Scholar 

  5. Chen, L., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 40, 834–848 (2018)

    Google Scholar 

  6. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: ICML, pp. 1597–1607 (2020)

    Google Scholar 

  7. Chen, X., He, K.: Exploring simple siamese representation learning. In: CVPR, pp. 15750–15758 (2021)

    Google Scholar 

  8. Choy, C.B., Gwak, J., Savarese, S.: 4d spatio-temporal convnets: Minkowski convolutional neural networks. In: CVPR, pp. 3075–3084 (2019)

    Google Scholar 

  9. Dai, A., Chang, A.X., Savva, M., Halber, M., Funkhouser, T.A., Nießner, M.: Scannet: richly-annotated 3d reconstructions of indoor scenes. In: CVPR, pp. 2432–2443 (2017)

    Google Scholar 

  10. Deng, J., Dong, W., Socher, R., Li, L., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: CVPR, pp. 248–255 (2009)

    Google Scholar 

  11. et al., Z.: Barlow twins: self-supervised learning via redundancy reduction. In: ICML (2021)

    Google Scholar 

  12. Genova, K., et al.: Learning 3d semantic segmentation with only 2d image supervision. In: 3DV (2021)

    Google Scholar 

  13. Graham, B.: Sparse 3d convolutional neural networks. In: Xie, X., Jones, M.W., Tam, G.K.L. (eds.) BMVC, pp. 150.1-150.9 (2015)

    Google Scholar 

  14. Graham, B., Engelcke, M., van der Maaten, L.: 3d semantic segmentation with submanifold sparse convolutional networks. In: CVPR, pp. 9224–9232 (2018)

    Google Scholar 

  15. Grandvalet, Y., Bengio, Y.: Semi-supervised learning by entropy minimization. In: NeurIPS, pp. 281–296 (2005)

    Google Scholar 

  16. Grill, J., et al.: Bootstrap your own latent - a new approach to self-supervised learning. In: NeurIPS (2020)

    Google Scholar 

  17. Hassani, K., Haley, M.: Unsupervised multi-task feature learning on point clouds. In: 2019 IEEE/CVF International Conference on Computer Vision, ICCV 2019, Seoul, Korea (South), October 27–November 2, 2019, pp. 8159–8170. IEEE (2019)

    Google Scholar 

  18. He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. arXiv preprint arXiv:2111.06377 (2021)

  19. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.B.: Momentum contrast for unsupervised visual representation learning. In: CVPR, pp. 9726–9735 (2020)

    Google Scholar 

  20. Hinton, G.E., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531 (2015)

  21. Hou, J., Graham, B., Nießner, M., Xie, S.: Exploring data-efficient 3d scene understanding with contrastive scene contexts. In: CVPR, pp. 15587–15597 (2021)

    Google Scholar 

  22. Hsiao, C., Sun, C., Chen, H., Sun, M.: Specialize and fuse: pyramidal output representation for semantic segmentation. In: ICCV (2021)

    Google Scholar 

  23. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: Bengio, Y., LeCun, Y. (eds.) 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May, 2015, Conference Track Proceedings (2015)

    Google Scholar 

  24. Li, Y., Bu, R., Sun, M., Wu, W., Di, X., Chen, B.: Pointcnn: convolution on x-transformed points. In: Bengio, S., Wallach, H.M., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) NeurIPS, pp. 828–838 (2018)

    Google Scholar 

  25. Liu, Y.C., et al.: Learning from 2d: Contrastive pixel-to-point knowledge transfer for 3d pretraining. arXiv preprint arXiv:2104.04687 (2021)

  26. Liu, Z., Qi, X., Fu, C.: One thing one click: a self-training approach for weakly supervised 3d semantic segmentation. In: CVPR, pp. 1726–1736 (2021)

    Google Scholar 

  27. Luo, L., Tian, B., Zhao, H., Zhou, G.: Pointly-supervised 3d scene parsing with viewpoint bottleneck. arXiv preprint arXiv:2109.08553 (2021)

  28. Maturana, D., Scherer, S.A.: Voxnet: A 3d convolutional neural network for real-time object recognition. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2015, Hamburg, Germany, 28 September–2 October, 2015, pp. 922–928 (2015)

    Google Scholar 

  29. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: deep learning on point sets for 3d classification and segmentation. In: CVPR, pp. 77–85 (2017)

    Google Scholar 

  30. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: deep hierarchical feature learning on point sets in a metric space. In: NeurIPS, pp. 5099–5108 (2017)

    Google Scholar 

  31. Ranftl, R., Bochkovskiy, A., Koltun, V.: Vision transformers for dense prediction. In: ICCV, pp. 12179–12188 (2021)

    Google Scholar 

  32. Riegler, G., Ulusoy, A.O., Geiger, A.: Octnet: learning deep 3d representations at high resolutions. In: CVPR, pp. 6620–6629 (2017)

    Google Scholar 

  33. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  34. Song, S., Lichtenberg, S.P., Xiao, J.: SUN RGB-D: a RGB-D scene understanding benchmark suite. In: CVPR, pp. 567–576 (2015)

    Google Scholar 

  35. Tarvainen, A., Valpola, H.: Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results. In: ICLR (2017)

    Google Scholar 

  36. Thomas, H., Qi, C.R., Deschaud, J., Marcotegui, B., Goulette, F., Guibas, L.J.: Kpconv: flexible and deformable convolution for point clouds. In: ICCV, pp. 6410–6419 (2019)

    Google Scholar 

  37. Wang, P., Liu, Y., Guo, Y., Sun, C., Tong, X.: O-CNN: octree-based convolutional neural networks for 3d shape analysis. ACM Trans. Graph, 72:1–72:11 (2017)

    Google Scholar 

  38. Wang, P., Yang, Y., Zou, Q., Wu, Z., Liu, Y., Tong, X.: Unsupervised 3d learning for shape analysis via multiresolution instance discrimination. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Thirty-Third Conference on Innovative Applications of Artificial Intelligence, IAAI 2021, The Eleventh Symposium on Educational Advances in Artificial Intelligence, EAAI 2021, Virtual Event, 2–9 February 2021, pp. 2773–2781. AAAI Press (2021)

    Google Scholar 

  39. Wu, W., Qi, Z., Li, F.: Pointconv: Deep convolutional networks on 3d point clouds. In: CVPR. pp. 9621–9630 (2019)

    Google Scholar 

  40. Wu, Z., et al.: 3d shapenets: a deep representation for volumetric shapes. In: CVPR, pp. 1912–1920 (2015)

    Google Scholar 

  41. Xie, S., Gu, J., Guo, D., Qi, C.R., Guibas, L., Litany, O.: PointContrast: unsupervised pre-training for 3D point cloud understanding. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12348, pp. 574–591. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58580-8_34

    Chapter  Google Scholar 

  42. Yan, X., Zheng, C., Li, Z., Wang, S., Cui, S.: Pointasnl: robust point clouds processing using nonlocal neural networks with adaptive sampling. In: CVPR, pp. 5588–5597 (2020)

    Google Scholar 

  43. Yi, L., et al.: A scalable active framework for region annotation in 3d shape collections. ACM Trans. Graph. 35, 210:1–210:12 (2016)

    Google Scholar 

  44. Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12351, pp. 173–190. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58539-6_11

    Chapter  Google Scholar 

  45. Zhang, Z., Girdhar, R., Joulin, A., Misra, I.: Self-supervised pretraining of 3d features on any point-cloud. In: ICCV (2021)

    Google Scholar 

  46. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: CVPR, pp. 6230–6239 (2017)

    Google Scholar 

  47. Zhao, Y., Birdal, T., Deng, H., Tombari, F.: 3d point capsule networks. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, 16–20 June, 2019, pp. 1009–1018. Computer Vision Foundation/IEEE (2019)

    Google Scholar 

  48. Zhou, B., Zhao, H., Puig, X., Fidler, S., Barriuso, A., Torralba, A.: Scene parsing through ADE20K dataset. In: CVPR, pp. 5122–5130 (2017)

    Google Scholar 

  49. Zhu, Z., Xu, M., Bai, S., Huang, T., Bai, X.: Asymmetric non-local neural networks for semantic segmentation. In: ICCV, pp. 593–602 (2019)

    Google Scholar 

Download references

Acknowledgements

This work is supported in part by Ministry of Science and Technology of Taiwan (MOST 110-2634-F-002-051). We would like to thank National Center for High-performance Computing (NCHC) for computational and storage resource.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping-Chung Yu .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 3821 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yu, PC., Sun, C., Sun, M. (2022). Data Efficient 3D Learner via Knowledge Transferred from 2D Model. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13689. Springer, Cham. https://doi.org/10.1007/978-3-031-19818-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19818-2_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19817-5

  • Online ISBN: 978-3-031-19818-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics