Skip to main content

Inverted Pyramid Multi-task Transformer for Dense Scene Understanding

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13687))

Included in the following conference series:

Abstract

Multi-task dense scene understanding is a thriving research domain that requires simultaneous perception and reasoning on a series of correlated tasks with pixel-wise prediction. Most existing works encounter a severe limitation of modeling in the locality due to heavy utilization of convolution operations, while learning interactions and inference in a global spatial-position and multi-task context is critical for this problem. In this paper, we propose a novel end-to-end Inverted Pyramid multi-task Transformer (InvPT) to perform simultaneous modeling of spatial positions and multiple tasks in a unified framework. To the best of our knowledge, this is the first work that explores designing a transformer structure for multi-task dense prediction for scene understanding. Besides, it is widely demonstrated that a higher spatial resolution is remarkably beneficial for dense predictions, while it is very challenging for existing transformers to go deeper with higher resolutions due to huge complexity to large spatial size. InvPT presents an efficient UP-Transformer block to learn multi-task feature interaction at gradually increased resolutions, which also incorporates effective self-attention message passing and multi-scale feature aggregation to produce task-specific prediction at a high resolution. Our method achieves superior multi-task performance on NYUD-v2 and PASCAL-Context datasets respectively, and significantly outperforms previous state-of-the-arts. The code is available at https://github.com/prismformore/InvPT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ba, J.L., Kiros, J.R., Hinton, G.E.: Layer normalization. arXiv preprint arXiv:1607.06450 (2016)

  2. Bai, Y., Mei, J., Yuille, A., Xie, C.: Are transformers more robust than CNNs? In: NeurIPS (2021)

    Google Scholar 

  3. Bello, I., Zoph, B., Le, Q., Vaswani, A., Shlens, J.: Attention augmented convolutional networks. In: ICCV (2019)

    Google Scholar 

  4. Bhojanapalli, S., Chakrabarti, A., Glasner, D., Li, D., Unterthiner, T., Veit, A.: Understanding robustness of transformers for image classification. In: ICCV (2021)

    Google Scholar 

  5. Bruggemann, D., Kanakis, M., Obukhov, A., Georgoulis, S., Van Gool, L.: Exploring relational context for multi-task dense prediction. In: ICCV (2021)

    Google Scholar 

  6. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13

    Chapter  Google Scholar 

  7. Chen, H., et al.: Pre-trained image processing transformer. In: CVPR (2021)

    Google Scholar 

  8. Chen, T., Saxena, S., Li, L., Fleet, D.J., Hinton, G.: Pix2Seq: a language modeling framework for object detection. arXiv preprint arXiv:2109.10852 (2021)

  9. Chen, X., Mottaghi, R., Liu, X., Fidler, S., Urtasun, R., Yuille, A.: Detect what you can: detecting and representing objects using holistic models and body parts. In: CVPR (2014)

    Google Scholar 

  10. Chen, Z., Badrinarayanan, V., Lee, C.Y., Rabinovich, A.: GradNorm: gradient normalization for adaptive loss balancing in deep multitask networks. In: ICML (2018)

    Google Scholar 

  11. Chen, Z., et al.: Just pick a sign: optimizing deep multitask models with gradient sign dropout. In: NeurIPS (2020)

    Google Scholar 

  12. d’Ascoli, S., Touvron, H., Leavitt, M., Morcos, A., Biroli, G., Sagun, L.: ConVit: improving vision transformers with soft convolutional inductive biases. In: ICML (2021)

    Google Scholar 

  13. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: CVPR (2009)

    Google Scholar 

  14. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. In: ICLR (2021)

    Google Scholar 

  15. Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes (VOC) challenge. IJCV 88(2), 303–338 (2010)

    Article  Google Scholar 

  16. Gao, Y., Bai, H., Jie, Z., Ma, J., Jia, K., Liu, W.: MTL-NAS: task-agnostic neural architecture search towards general-purpose multi-task learning. In: CVPR (2020)

    Google Scholar 

  17. Gao, Y., Ma, J., Zhao, M., Liu, W., Yuille, A.L.: NDDR-CNN: layerwise feature fusing in multi-task CNNs by neural discriminative dimensionality reduction. In: CVPR (2019)

    Google Scholar 

  18. Han, K., Xiao, A., Wu, E., Guo, J., Xu, C., Wang, Y.: Transformer in transformer. In: NeurIPS (2021)

    Google Scholar 

  19. Kendall, A., Gal, Y., Cipolla, R.: Multi-task learning using uncertainty to weigh losses for scene geometry and semantics. In: CVPR (2018)

    Google Scholar 

  20. Liang, M., Yang, B., Chen, Y., Hu, R., Urtasun, R.: Multi-task multi-sensor fusion for 3D object detection. In: CVPR (2019)

    Google Scholar 

  21. Liu, Y., Sangineto, E., Bi, W., Sebe, N., Lepri, B., De Nadai, M.: Efficient training of visual transformers with small-size datasets. arXiv preprint arXiv:2106.03746 (2021)

  22. Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: ICCV (2021)

    Google Scholar 

  23. Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(11) (2008)

    Google Scholar 

  24. Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. JMLR 9(11) (2008)

    Google Scholar 

  25. Maninis, K.K., Radosavovic, I., Kokkinos, I.: Attentive single-tasking of multiple tasks. In: CVPR (2019)

    Google Scholar 

  26. Mao, J., et al.: Voxel transformer for 3D object detection. In: ICCV (2021)

    Google Scholar 

  27. Misra, I., Shrivastava, A., Gupta, A., Hebert, M.: Cross-stitch networks for multi-task learning. In: CVPR (2016)

    Google Scholar 

  28. Pan, X., Xia, Z., Song, S., Li, L.E., Huang, G.: 3D object detection with pointformer. In: CVPR (2021)

    Google Scholar 

  29. Parmar, N., et al.: Image transformer. In: ICML (2018)

    Google Scholar 

  30. Perazzi, F., Pont-Tuset, J., McWilliams, B., Gool, L.V., Gross, M., Sorkine-Hornung, A.: A benchmark dataset and evaluation methodology for video object segmentation. In: CVPR (2016)

    Google Scholar 

  31. Radford, A., et al.: Learning transferable visual models from natural language supervision. arXiv preprint arXiv:2103.00020 (2021)

  32. Ramachandran, P., Parmar, N., Vaswani, A., Bello, I., Levskaya, A., Shlens, J.: Stand-alone self-attention in vision models. In: NeurIPS (2019)

    Google Scholar 

  33. Ramesh, A., et al.: Zero-shot text-to-image generation. In: ICML (2021)

    Google Scholar 

  34. Ranftl, R., Bochkovskiy, A., Koltun, V.: Vision transformers for dense prediction. In: ICCV (2021)

    Google Scholar 

  35. Ruder, S., Bingel, J., Augenstein, I., Søgaard, A.: Latent multi-task architecture learning. In: AAAI (2019)

    Google Scholar 

  36. Sener, O., Koltun, V.: Multi-task learning as multi-objective optimization. In: NeurIPS (2018)

    Google Scholar 

  37. Silberman, N., Hoiem, D., Kohli, P., Fergus, R.: Indoor segmentation and support inference from RGBD images. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7576, pp. 746–760. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33715-4_54

    Chapter  Google Scholar 

  38. Srinivas, A., Lin, T.Y., Parmar, N., Shlens, J., Abbeel, P., Vaswani, A.: Bottleneck transformers for visual recognition. In: CVPR (2021)

    Google Scholar 

  39. Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., Jegou, H.: Training data-efficient image transformers & distillation through attention. In: ICML (2021)

    Google Scholar 

  40. Touvron, H., Cord, M., Sablayrolles, A., Synnaeve, G., Jégou, H.: Going deeper with image transformers. In: ICCV (2021)

    Google Scholar 

  41. Vandenhende, S., Georgoulis, S., Van Gansbeke, W., Proesmans, M., Dai, D., Van Gool, L.: Multi-task learning for dense prediction tasks: a survey. TPAMI (2021)

    Google Scholar 

  42. Vandenhende, S., Georgoulis, S., Van Gool, L.: MTI-net: multi-scale task interaction networks for multi-task learning. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12349, pp. 527–543. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58548-8_31

    Chapter  Google Scholar 

  43. Vaswani, A., et al.: Attention is all you need. In: NeurIPS (2017)

    Google Scholar 

  44. Wang, W., et al.: Pyramid vision transformer: a versatile backbone for dense prediction without convolutions. In: ICCV (2021)

    Google Scholar 

  45. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: CVPR (2018)

    Google Scholar 

  46. Wu, H., et al.: CVT: introducing convolutions to vision transformers. arXiv preprint arXiv:2103.15808 (2021)

  47. Xie, E., Wang, W., Yu, Z., Anandkumar, A., Alvarez, J.M., Luo, P.: SegFormer: simple and efficient design for semantic segmentation with transformers. In: NeurIPS (2021)

    Google Scholar 

  48. Xu, D., Ouyang, W., Wang, X., Sebe, N.: Pad-net: multi-tasks guided prediction-and-distillation network for simultaneous depth estimation and scene parsing. In: CVPR (2018)

    Google Scholar 

  49. Yang, J., et al.: Focal self-attention for local-global interactions in vision transformers. In: NeurIPS (2021)

    Google Scholar 

  50. Yuan, Y., et al.: HRFormer: high-resolution transformer for dense prediction. In: NeurIPS (2021)

    Google Scholar 

  51. Zhang, X., Zhou, L., Li, Y., Cui, Z., Xie, J., Yang, J.: Transfer vision patterns for multi-task pixel learning. In: ACMMM (2021)

    Google Scholar 

  52. Zhang, Z., Cui, Z., Xu, C., Yan, Y., Sebe, N., Yang, J.: Pattern-affinitive propagation across depth, surface normal and semantic segmentation. In: CVPR (2019)

    Google Scholar 

  53. Zhao, H., Jiang, L., Jia, J., Torr, P.H., Koltun, V.: Point transformer. In: ICCV (2021)

    Google Scholar 

  54. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: CVPR (2017)

    Google Scholar 

  55. Zhou, L., et al.: Pattern-structure diffusion for multi-task learning. In: CVPR (2020)

    Google Scholar 

Download references

Acknowledgements

This research is supported in part by the Early Career Scheme of the Research Grants Council (RGC) of the Hong Kong SAR under grant No. 26202321 and HKUST Startup Fund No. R9253.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Xu .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2179 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ye, H., Xu, D. (2022). Inverted Pyramid Multi-task Transformer for Dense Scene Understanding. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13687. Springer, Cham. https://doi.org/10.1007/978-3-031-19812-0_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19812-0_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19811-3

  • Online ISBN: 978-3-031-19812-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics