Skip to main content

Towards Hard-Positive Query Mining for DETR-Based Human-Object Interaction Detection

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13687))

Included in the following conference series:

Abstract

Human-Object Interaction (HOI) detection is a core task for high-level image understanding. Recently, Detection Transformer (DETR)-based HOI detectors have become popular due to their superior performance and efficient structure. However, these approaches typically adopt fixed HOI queries for all testing images, which is vulnerable to the location change of objects in one specific image. Accordingly, in this paper, we propose to enhance DETR’s robustness by mining hard-positive queries, which are forced to make correct predictions using partial visual cues. First, we explicitly compose hard-positive queries according to the ground-truth (GT) position of labeled human-object pairs for each training image. Specifically, we shift the GT bounding boxes of each labeled human-object pair so that the shifted boxes cover only a certain portion of the GT ones. We encode the coordinates of the shifted boxes for each labeled human-object pair into an HOI query. Second, we implicitly construct another set of hard-positive queries by masking the top scores in cross-attention maps of the decoder layers. The masked attention maps then only cover partial important cues for HOI predictions. Finally, an alternate strategy is proposed that efficiently combines both types of hard queries. In each iteration, both DETR’s learnable queries and one selected type of hard-positive queries are adopted for loss computation. Experimental results show that our proposed approach can be widely applied to existing DETR-based HOI detectors. Moreover, we consistently achieve state-of-the-art performance on three benchmarks: HICO-DET, V-COCO, and HOI-A. Code is available at https://github.com/MuchHair/HQM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gupta, S., Malik, J.: Visual semantic role labeling. arXiv preprint arXiv:1505.04474 (2015)

  2. Chao, Y., Liu, Y., Liu, X., Zeng, H., Deng, J.: Learning to detect human-object interactions. In: WACV (2018)

    Google Scholar 

  3. Ji, J., Krishna, R., Fei-Fei, L., Niebles, J.: Action genome: Actions as compositions of spatio-temporal scene graphs. In: CVPR (2020)

    Google Scholar 

  4. Tamura, M., Ohashi, H., Yoshinaga, T.: QPIC: query-based pairwise human-object interaction detection with image-wide contextual information. In: CVPR (2021)

    Google Scholar 

  5. Kim, B., Lee, J., Kang, J., Kim, E., Kim, H.: HOTR: end-to-end human-object interaction detection with transformers. In: CVPR (2021)

    Google Scholar 

  6. Zou, C., et al.: End-to-end human object interaction detection with hoi transformer. In: CVPR (2021)

    Google Scholar 

  7. Zhang, A., et al.: Mining the Benefits of Two-stage and One-stage HOI Detection. In: NeurIPS (2021)

    Google Scholar 

  8. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13

    Chapter  Google Scholar 

  9. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: NeurIPS (2015)

    Google Scholar 

  10. Li, Y., et al.: Transferable Interactiveness Knowledge for Human-Object Interaction Detection. In: CVPR (2019)

    Google Scholar 

  11. Gupta, T., Schwing, A., Hoiem, D.: No-frills human-object interaction detection: factorization, layout encodings, and training techniques. In: ICCV (2019)

    Google Scholar 

  12. Wang, T., Yang, T., Danelljan, M., Khan, F., Zhang, X., Sun, J.: Learning human-object interaction detection using interaction points. In: CVPR (2020)

    Google Scholar 

  13. Liao, Y., Liu, S., Wang, F., Chen, Y., Qian, C., Feng, J.: Ppdm: Parallel point detection and matching for real-time human-object interaction detection. In: CVPR (2020)

    Google Scholar 

  14. Ulutan, O., Iftekhar, A., Manjunath, B.: VSGNet: Spatial attention network for detecting human object interactions using graph convolutions. In: CVPR (2020)

    Google Scholar 

  15. Li, Y.: Detailed 2D–3D joint representation for human-object interaction. In: CVPR (2020)

    Google Scholar 

  16. Zhong, X., Ding, C., Qu, X., Tao, D.: Polysemy deciphering network for human-object interaction detection. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12365, pp. 69–85. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58565-5_5

    Chapter  Google Scholar 

  17. Zhong, X., Ding, C., Qu, X., Tao, D.: Polysemy deciphering network for robust human-object interaction detection. In: IJCV (2021)

    Google Scholar 

  18. Gao, C., Xu, J., Zou, Y., Huang, J.-B.: DRG: Dual relation graph for human-object interaction detection. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12357, pp. 696–712. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58610-2_41

    Chapter  Google Scholar 

  19. Hou, Z., Peng, X., Qiao, Yu., Tao, D.: Visual compositional learning for human-object interaction detection. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12360, pp. 584–600. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58555-6_35

    Chapter  Google Scholar 

  20. Kim, D.-J., Sun, X., Choi, J., Lin, S., Kweon, I.S.: Detecting human-object interactions with action co-occurrence priors. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12366, pp. 718–736. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58589-1_43

    Chapter  Google Scholar 

  21. Zhou, P., Chi, M.: Relation parsing neural network for human-object interaction detection. In: ICCV (2019)

    Google Scholar 

  22. Liu, Y., Chen, Q., Zisserman, A.: Amplifying key cues for human-object-interaction detection. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12359, pp. 248–265. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58568-6_15

    Chapter  Google Scholar 

  23. Liu, Y., Yuan, J., Chen, C.: ConsNet: learning consistency graph for zero-shot human-object interaction detection. In: ACM MM (2020)

    Google Scholar 

  24. Wan, B., Zhou, D., Liu, Y., Li, R., He, X.: Pose-aware Multi-level Feature Network for Human Object Interaction Detection. In: ICCV (2019)

    Google Scholar 

  25. Gao, C., Zou, Y., Huang, J.: ican: Instance-centric attention network for human-object interaction detection. In: BMVC (2018)

    Google Scholar 

  26. Wang, T., et al.: Deep contextual attention for human-object interaction detection. In: ICCV (2019)

    Google Scholar 

  27. Gkioxari, G., Girshick, R.: Detecting and recognizing human-object interactions. In: CVPR (2018)

    Google Scholar 

  28. Zhong, X., Qu, X., Ding, C., Tao, D.: Glance and gaze: inferring action-aware points for one-stage human-object interaction detection. In: CVPR (2021)

    Google Scholar 

  29. Kim, B., Choi, T., Kang, J., Kim, H.J.: Uniondet: Union-level detector towards real-time human-object interaction detection. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12360, pp. 498–514. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58555-6_30

    Chapter  Google Scholar 

  30. Chen, M., Liao, Y., Liu, S., Chen, Z., Wang, F., Qian, C.: Reformulating hoi detection as adaptive set prediction. In: CVPR (2021)

    Google Scholar 

  31. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  32. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)

    Google Scholar 

  33. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.: Attention is all you need. In: NeurIPS (2017)

    Google Scholar 

  34. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  35. Kuhn, H.: The Hungarian method for the assignment problem. In: Naval Research Logistics Quarterly (2020)

    Google Scholar 

  36. Ghiasi, G., Lin, T., Le, Q.: Dropblock: A regularization method for convolutional networks. In: Wiley Online Library (1955)

    Google Scholar 

  37. Zhou, T., Wang, W., Qi, S., Ling, H., Shen, J.: Cascaded human-object interaction recognition. In: CVPR (2020)

    Google Scholar 

  38. Pic leaderboard (2019). http://www.picdataset.com/challenge/leaderboard/hoi2019,

  39. Meng, D.: Conditional DETR for fast training convergence. In: ICCV (2021)

    Google Scholar 

  40. Gao, P., Zheng, M., Wang, X., Dai, J., Li, H.: Fast convergence of DETR with spatially modulated CoAttention. In: ICCV (2021)

    Google Scholar 

  41. Dai, X., Chen, Y., Yang, J., Zhang, P., Yuan, L., Zhang, L.: Dynamic DETR: end-to-end object detection with dynamic attention. In: ICCV (2021)

    Google Scholar 

  42. Zhu, X., Su, W., Lu, L., Li, B., Wang, X., Dai, J.: Deformable DETR: deformable transformers for end- to-end object detection. In: ICLR (2020)

    Google Scholar 

  43. Liu, S., et al.: DAB-DETR: dynamic anchor boxes are better queries for DETR. In: ICLR (2022)

    Google Scholar 

  44. Yuan, H., Wang, M., Ni, D., Xu, L.: Detecting human-object interactions with object-guided cross-modal calibrated semantics. In: AAAI (2022)

    Google Scholar 

  45. Li, Z., Zou, C., Zhao, Y., Li, B., Zhong, S.: Improving human-object interaction detection via phrase learning and label composition. In: AAAI (2022)

    Google Scholar 

  46. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: ICLR (2018)

    Google Scholar 

  47. Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: CVPR (2019)

    Google Scholar 

  48. Lin, T., Goyal, P., Girshick, R., He, K., Dollar, P.: Focal loss for dense object detection. In: ICCV (2017)

    Google Scholar 

  49. Wang, X., Shrivastava, A., Gupta, A.: A-fast-rcnn: Hard positive generation via adversary for object detection. arXiv preprint arXiv:2201.12329 (2022)

  50. Shrivastava, A., Gupta, A., Girshick, R.: Training region-based object detectors with online hard example mining. In: CVPR (2017)

    Google Scholar 

  51. Wang, K., Wang, P., Ding, C., Tao, D.: Batch coherence-driven network for part-aware person re-identification. In: TIP (2021)

    Google Scholar 

  52. Qu, X., Ding, C., Li, X., Zhong, X., Tao, D.: Distillation using oracle queries for transformer-based human-object interaction detection. In: CVPR (2022)

    Google Scholar 

  53. Lin, X., Ding, C., Zhang, J., Zhan, Y., Tao, D.: RU-Net: regularized unrolling network for scene graph generation. In: CVPR (2022)

    Google Scholar 

  54. Lin, X., Ding, C., Zhan, Y., Li, Z., Tao, D.: HL-Net: Heterophily learning network for scene graph generation. In: CVPR (2022)

    Google Scholar 

  55. Li, F., Zhang, H., Liu, S., Guo, J., Ni, L., Zhang, L.: Dn-detr: Accelerate detr training by introducing query denoising. In: CVPR (2022)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grant 62076101 and 61702193, the Program for Guangdong Introducing Innovative and Entrepreneurial Teams under Grant 2017ZT07X183, Guangdong Basic and Applied Basic Research Foundation under Grant 2022A1515011549, and Guangdong Provincial Key Laboratory of Human Digital Twin under Grant 2022B1212010004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changxing Ding .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 922 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhong, X., Ding, C., Li, Z., Huang, S. (2022). Towards Hard-Positive Query Mining for DETR-Based Human-Object Interaction Detection. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13687. Springer, Cham. https://doi.org/10.1007/978-3-031-19812-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19812-0_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19811-3

  • Online ISBN: 978-3-031-19812-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics