Skip to main content

Towards Racially Unbiased Skin Tone Estimation via Scene Disambiguation

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13673))

Included in the following conference series:

Abstract

Virtual facial avatars will play an increasingly important role in immersive communication, games and the metaverse, and it is therefore critical that they be inclusive. This requires accurate recovery of the albedo, regardless of age, sex, or ethnicity. While significant progress has been made on estimating 3D facial geometry, appearance estimation has received less attention. The task is fundamentally ambiguous because the observed color is a function of albedo and lighting, both of which are unknown. We find that current methods are biased towards light skin tones due to (1) strongly biased priors that prefer lighter pigmentation and (2) algorithmic solutions that disregard the light/albedo ambiguity. To address this, we propose a new evaluation dataset (FAIR) and an algorithm (TRUST) to improve albedo estimation and, hence, fairness. Specifically, we create the first facial albedo evaluation benchmark where subjects are balanced in terms of skin color, and measure accuracy using the Individual Typology Angle (ITA) metric. We then address the light/albedo ambiguity by building on a key observation: the image of the full scene –as opposed to a cropped image of the face– contains important information about lighting that can be used for disambiguation. TRUST regresses facial albedo by conditioning on both the face region and a global illumination signal obtained from the scene image. Our experimental results show significant improvement compared to state-of-the-art methods on albedo estimation, both in terms of accuracy and fairness. The evaluation benchmark and code are available for research purposes at https://trust.is.tue.mpg.de.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://triplegangers.com/.

  2. 2.

    https://polyhaven.com/.

  3. 3.

    For GANFIT [25], the albedos contain a significant amount of baked-in lighting, and were captured with lower light conditions, hence the tendency to do well on dark skin tones.

  4. 4.

    https://www.3dscanstore.com/.

  5. 5.

    There are exceptions to this, such as a scenes where some faces are in shadow or where the lighting is high-frequency.

  6. 6.

    https://renderpeople.com/.

  7. 7.

    Note that these scenes are completely different from those used in the evaluation benchmark.

References

  1. Adamson, A.S., Smith, A.: Machine learning and health care disparities in dermatology. JAMA Dermatol. 154(11), 1247–1248 (2018)

    Article  Google Scholar 

  2. Aldrian, O., Smith, W.A.: Inverse rendering of faces with a 3D morphable model. Trans. Pattern Anal. Mach. Intell. (PAMI) 35(5), 1080–1093 (2012)

    Article  Google Scholar 

  3. Bai, Z., Cui, Z., Liu, X., Tan, P.: Riggable 3D face reconstruction via in-network optimization. In: Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6216–6225 (2021)

    Google Scholar 

  4. Bas, A., Smith, W.A.P.: What does 2D geometric information really tell us about 3D face shape? Int. J. Comput. Vis. (IJCV) 127(10), 1455–1473 (2019)

    Article  Google Scholar 

  5. Bianco, S., Schettini, R.: Adaptive color constancy using faces. Trans. Pattern Anal. Mach. Intell. (PAMI) 36(8), 1505–1518 (2014)

    Article  Google Scholar 

  6. Blanz, V., Romdhani, S., Vetter, T.: Face identification across different poses and illuminations with a 3D morphable model. In: International Conference on Automatic Face & Gesture Recognition (FG), pp. 202–207 (2002)

    Google Scholar 

  7. Blanz, V., Vetter, T.: A morphable model for the synthesis of 3d faces. In: SIGGRAPH, pp. 187–194 (1999)

    Google Scholar 

  8. Buolamwini, J., Gebru, T.: Gender shades: intersectional accuracy disparities in commercial gender classification. In: Conference on Fairness, Accountability and Transparency, pp. 77–91. PMLR (2018)

    Google Scholar 

  9. Chardon, A., Cretois, I., Hourseau, C.: Skin colour typology and suntanning pathways. Int. J. Cosmet. Sci. 13(4), 191–208 (1991)

    Article  Google Scholar 

  10. Chaudhuri, B., Vesdapunt, N., Shapiro, L., Wang, B.: Personalized face modeling for improved face reconstruction and motion retargeting. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12350, pp. 142–160. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58558-7_9

    Chapter  Google Scholar 

  11. Chen, A., Chen, Z., Zhang, G., Mitchell, K., Yu, J.: Photo-realistic facial details synthesis from single image. In: International Conference on Computer Vision (ICCV), pp. 9429–9439 (2019)

    Google Scholar 

  12. Choi, H., Choi, K., Suk, H.: Performance of the 14 skin-colored patches in accurately estimating human skin color. In: Computational Imaging XV, pp. 62–65 (2017)

    Google Scholar 

  13. Dai, H., Pears, N., Smith, W., Duncan, C.: Statistical modeling of craniofacial shape and texture. Int. J. Comput. Vis. (IJCV) 128(2), 547–571 (2019)

    Article  Google Scholar 

  14. Del Bino, S., Sok, J., Bessac, E., Bernerd, F.: Relationship between skin response to ultraviolet exposure and skin color type. Pigment Cell Res. 19(6), 606–614 (2006)

    Article  Google Scholar 

  15. Del Bino, S., Bernerd, F.: Variations in skin colour and the biological consequences of ultraviolet radiation exposure. Br. J. Dermatol. 169, 33–40 (2013)

    Article  Google Scholar 

  16. Deng, Y., Yang, J., Xu, S., Chen, D., Jia, Y., Tong, X.: Accurate 3D face reconstruction with weakly-supervised learning: from single image to image set. In: Conference on Computer Vision and Pattern Recognition Workshops (CVPR-W) (2019)

    Google Scholar 

  17. Dooley, S., et al.: Comparing human and machine bias in face recognition. arXiv preprint arXiv:2110.08396 (2021)

  18. Drozdowski, P., Rathgeb, C., Dantcheva, A., Damer, N., Busch, C.: Demographic bias in biometrics: a survey on an emerging challenge. Trans. Technol. Soc. 1(2), 89–103 (2020)

    Article  Google Scholar 

  19. Egger, B., Schönborn, S., Schneider, A., Kortylewski, A., Morel-Forster, A., Blumer, C., Vetter, T.: Occlusion-aware 3D morphable models and an illumination prior for face image analysis. Int. J. Comput. Vis. (IJCV) 126(12), 1269–1287 (2018)

    Article  Google Scholar 

  20. Egger, B., et al.: 3D morphable face models - past, present, and future. Trans. Graph. (TOG) 39(5), 1–38 (2020)

    Google Scholar 

  21. Egger, B., Sutherland, S., Medin, S.C., Tenenbaum, J.: Identity-expression ambiguity in 3D morphable face models. arXiv preprint arXiv:2109.14203 (2021)

  22. Feng, Y., Feng, H., Black, M.J., Bolkart, T.: Learning an animatable detailed 3D face model from in-the-wild images. Trans. Graph. (Proc. SIGGRAPH) 40(4), 1–13 (2021)

    Google Scholar 

  23. Fitzpatrick, T.B.: The validity and practicality of sun-reactive skin types I through VI. Arch. Dermatol. 124(6), 869–871 (1988)

    Article  Google Scholar 

  24. Gecer, B., Deng, J., Zafeiriou, S.: Ostec: one-shot texture completion. In: Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7628–7638 (2021)

    Google Scholar 

  25. Gecer, B., Ploumpis, S., Kotsia, I., Zafeiriou, S.: Ganfit: Generative adversarial network fitting for high fidelity 3d face reconstruction. In: Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1155–1164 (2019)

    Google Scholar 

  26. Genova, K., Cole, F., Maschinot, A., Sarna, A., Vlasic, D., Freeman, W.T.: Unsupervised training for 3D morphable model regression. In: Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8377–8386 (2018)

    Google Scholar 

  27. Gerig, T., et al.: Morphable face models - an open framework. In: International Conference on Automatic Face & Gesture Recognition (FG), pp. 75–82 (2018)

    Google Scholar 

  28. Hu, G., Mortazavian, P., Kittler, J., Christmas, W.: A facial symmetry prior for improved illumination fitting of 3D morphable model. In: 2013 International Conference on Biometrics (ICB), pp. 1–6. IEEE (2013)

    Google Scholar 

  29. Kim, H., Zollhöfer, M., Tewari, A., Thies, J., Richardt, C., Theobalt, C.: InverseFaceNet: deep monocular inverse face rendering. In: Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4625–4634 (2018)

    Google Scholar 

  30. Kim, T., et al.: Countering racial bias in computer graphics research. arXiv preprint arXiv:2103.15163 (2021)

  31. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  32. Kinyanjui, N.M., et al.: Fairness of classifiers across skin tones in dermatology. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12266, pp. 320–329. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59725-2_31

    Chapter  Google Scholar 

  33. Kips, R., Gori, P., Perrot, M., Bloch, I.: CA-GAN: weakly supervised color aware GAN for controllable makeup transfer. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020. LNCS, vol. 12537, pp. 280–296. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-67070-2_17

    Chapter  Google Scholar 

  34. Kips, R., Tran, L., Malherbe, E., Perrot, M.: Beyond color correction: skin color estimation in the wild through deep learning. Electronic Imaging 2020(5), 1–82 (2020)

    Google Scholar 

  35. Krasin, I., et al.: Openimages: a public dataset for large-scale multi-label and multi-class image classification, 2(3), 18 (2017). Dataset available from https://github.com/openimages

  36. Krishnapriya, K.S., Albiero, V., Vangara, K., King, M.C., Bowyer, K.W.: Issues related to face recognition accuracy varying based on race and skin tone. IEEE Trans. Technol. Soc. 1(1), 8–20 (2020). https://doi.org/10.1109/TTS.2020.2974996

    Article  Google Scholar 

  37. Lattas, A., et al.: AvatarMe: realistically renderable 3D facial reconstruction. In: Conference on Computer Vision and Pattern Recognition (CVPR), pp. 760–769 (2020)

    Google Scholar 

  38. Li, R., et al.: Learning formation of physically-based face attributes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3410–3419 (2020)

    Google Scholar 

  39. Li, T., Bolkart, T., Black, M.J., Li, H., Romero, J.: Learning a model of facial shape and expression from 4D scans. ACM Transactions on Graphics, (Proc. SIGGRAPH Asia) 36(6), 1–17 (2017). https://doi.org/10.1145/3130800.3130813

  40. Lin, J., Yuan, Y., Shao, T., Zhou, K.: Towards high-fidelity 3D face reconstruction from in-the-wild images using graph convolutional networks. In: Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2020)

    Google Scholar 

  41. Locatello, F., et al.: Challenging common assumptions in the unsupervised learning of disentangled representations. arXiv preprint arXiv:1811.12359 (2018)

  42. Locatello, F., et al.: Disentangling factors of variation using few labels. arXiv preprint arXiv:1905.01258 (2019)

  43. Marguier, J., Bhatti, N., Baker, H., Harville, M., Süsstrunk, S.: Assessing human skin color from uncalibrated images. Int. J. Imaging Syst. Technol. 17(3), 143–151 (2007)

    Article  Google Scholar 

  44. Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., Galstyan, A.: A survey on bias and fairness in machine learning. ACM Comput. Surv. 54(6) (2021). https://doi.org/10.1145/3457607

  45. Merler, M., Ratha, N., Feris, R.S., Smith, J.R.: Diversity in faces. arXiv preprint arXiv:1901.10436 (2019)

  46. Osoba, O.A., Welser IV, W.: An intelligence in our image: the risks of bias and errors in artificial intelligence. Rand Corporation (2017)

    Google Scholar 

  47. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems (NeurIPS) (2019)

    Google Scholar 

  48. Paysan, P., Knothe, R., Amberg, B., Romdhani, S., Vetter, T.: A 3D face model for pose and illumination invariant face recognition. In: 2009 Sixth IEEE International Conference on Advanced Video and Signal Based Surveillance. pp. 296–301. IEEE (2009)

    Google Scholar 

  49. Pichon, L.C., Landrine, H., Corral, I., Hao, Y., Mayer, J.A., Hoerster, K.D.: Measuring skin cancer risk in african americans: is the fitzpatrick skin type classification scale culturally sensitive. Ethn. Dis. 20(2), 174–179 (2010)

    Google Scholar 

  50. Rajkomar, A., Hardt, M., Howell, M.D., Corrado, G., Chin, M.H.: Ensuring fairness in machine learning to advance health equity. Ann. Intern. Med. 169(12), 866–872 (2018)

    Article  Google Scholar 

  51. Ramamoorthi, R., Hanrahan, P.: A signal-processing framework for inverse rendering. In: Pocock, L. (ed.) SIGGRAPH, pp. 117–128 (2001)

    Google Scholar 

  52. Ravi, N., et al.: PyTorch3d. https://github.com/facebookresearch/pytorch3d (2020)

  53. Robinson, J.P., Livitz, G., Henon, Y., Qin, C., Fu, Y., Timoner, S.: Face recognition: too bias, or not too bias? In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (2020)

    Google Scholar 

  54. Sahasrabudhe, M., Shu, Z., Bartrum, E., Güler, R.A., Samaras, D., Kokkinos, I.: Lifting autoencoders: unsupervised learning of a fully-disentangled 3D morphable model using deep non-rigid structure from motion. In: International Conference on Computer Vision Workshops (ICCV-W), pp. 4054–4064 (2019)

    Google Scholar 

  55. Saito, S., Wei, L., Hu, L., Nagano, K., Li, H.: Photorealistic facial texture inference using deep neural networks. In: Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5144–5153 (2017)

    Google Scholar 

  56. Schönborn, S., Egger, B., Morel-Forster, A., Vetter, T.: Markov chain monte Carlo for automated face image analysis. Int. J. Comput. Vis. (IJCV) 123(2), 160–183 (2017)

    Article  MathSciNet  Google Scholar 

  57. Sengupta, S., Kanazawa, A., Castillo, C.D., Jacobs, D.W.: SfSNet: learning shape, reflectance and illuminance of facesin the wild. In: Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6296–6305 (2018)

    Google Scholar 

  58. Shang, J., et al.: Self-supervised monocular 3D face reconstruction by occlusion-aware multi-view geometry consistency. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12360, pp. 53–70. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58555-6_4

    Chapter  Google Scholar 

  59. Shi, F., Wu, H.T., Tong, X., Chai, J.: Automatic acquisition of high-fidelity facial performances using monocular videos. ACM Trans. Graph. (TOG) 33(6), 1–13 (2014)

    Article  Google Scholar 

  60. Shu, Z., Yumer, E., Hadap, S., Sunkavalli, K., Shechtman, E., Samaras, D.: Neural face editing with intrinsic image disentangling. In: Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5541–5550 (2017)

    Google Scholar 

  61. Smith, W.A.P., Seck, A., Dee, H., Tiddeman, B., Tenenbaum, J., Egger, B.: A morphable face albedo model. In: Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5010–5019 (2020)

    Google Scholar 

  62. Terhörst, P., Kolf, J.N., Huber, M., Kirchbuchner, F., Damer, N., Moreno, A.M., Fierrez, J., Kuijper, A.: A comprehensive study on face recognition biases beyond demographics. IEEE Trans. Technol. Soc. 3(1), 16–30 (2021)

    Article  Google Scholar 

  63. Tewari, A., et al.: FML: face model learning from videos. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 10812–10822 (2019)

    Google Scholar 

  64. Tewari, A., et al.: Self-supervised multi-level face model learning for monocular reconstruction at over 250 Hz. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2549–2559 (2018)

    Google Scholar 

  65. Tewari, A., et al.: MoFA: model-based deep convolutional face autoencoder for unsupervised monocular reconstruction. In: International Conference on Computer Vision (ICCV) (2017)

    Google Scholar 

  66. Thies, J., Zollhöfer, M., Stamminger, M., Theobalt, C., Nießner, M.: Face2Face: real-time face capture and reenactment of RGB videos. In: Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2387–2395 (2016)

    Google Scholar 

  67. Tran, L., Liu, F., Liu, X.: Towards high-fidelity nonlinear 3D face morphable model. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1126–1135 (2019)

    Google Scholar 

  68. Tran, L., Liu, X.: Nonlinear 3D face morphable model. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 7346–7355 (2018)

    Google Scholar 

  69. Wang, M., Deng, W., Hu, J., Tao, X., Huang, Y.: Racial faces in the wild: reducing racial bias by information maximization adaptation network. In: International Conference on Computer Vision (ICCV), pp. 692–702 (2019)

    Google Scholar 

  70. Wen, Y., Liu, W., Raj, B., Singh, R.: Self-supervised 3D face reconstruction via conditional estimation. In: International Conference on Computer Vision (ICCV), pp. 13289–13298 (2021)

    Google Scholar 

  71. Wilson, B., Hoffman, J., Morgenstern, J.: Predictive inequity in object detection. arXiv preprint arXiv:1902.11097 (2019)

  72. Yamaguchi, S., et al.: High-fidelity facial reflectance and geometry inference from an unconstrained image. Trans. Graph. (TOG) 37(4), 1–14 (2018)

    Article  Google Scholar 

  73. Youn, J., et al.: Relationship between skin phototype and med in korean, brown skin. Photodermatol. Photoimmunol. Photomed. 13(5–6), 208–211 (1997)

    Article  Google Scholar 

Download references

Acknowledgements

We thank S. Sanyal for the helpful suggestions, O. Ben-Dov, R. Danecek, Y. Wen for helping with the baselines, N. Athanasiou, Y. Feng, Y. Xiu for proof-reading, and B. Pellkofer for the technical support.

Disclosure: MJB has received research gift funds from Adobe, Intel, Nvidia, Meta/Facebook, and Amazon. MJB has financial interests in Amazon, Datagen Technologies, and Meshcapade GmbH. While MJB was a part-time employee of Amazon during a portion of this project, his research was performed solely at, and funded solely by, the Max Planck Society. While TB is a part-time employee of Amazon, his research was performed solely at, and funded solely by, MPI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victoria Abrevaya .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 14292 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Feng, H., Bolkart, T., Tesch, J., Black, M.J., Abrevaya, V. (2022). Towards Racially Unbiased Skin Tone Estimation via Scene Disambiguation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13673. Springer, Cham. https://doi.org/10.1007/978-3-031-19778-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19778-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19777-2

  • Online ISBN: 978-3-031-19778-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics