Skip to main content

Fecal Microbiota Transplantation in Diseases Not Associated with Clostridium difficile: Current Status and Future Therapeutic Option

  • Chapter
  • First Online:
Microbiome in 3P Medicine Strategies

Abstract

Fecal microbiota transplantation (FMT) is one of several effective methods for modifying altered intestinal microbiota and treating certain gastrointestinal diseases. Currently, the only officially approved grounds for FMT is a recurrent infection of Clostridium difficile. Recently published data showed FMT success in paving the use of precision medicine in gastrointestinal disorders. Nonetheless, the effectiveness of FMT is presently being studied in treating other gastrointestinal and non-gastrointestinal pathologies not associated with recurrent infection of Clostridium difficile.

Here, in the frame of Predictive, Preventive, and Personalized Medicine (PPPM), discovered a modern view of current research on the results of FMT use in patients with inflammatory bowel diseases, constipation, irritable bowel syndrome, antibiotic-associated diarrhea and hepatic encephalopathy, as well as such non-gastroenterological diseases as psoriasis, multiple sclerosis, autism, Parkinson’s disease and metabolic syndrome. Based on a literature review, the authors conclude that FMT’s potential effectiveness and feasibility in patients with ulcerative colitis, irritable bowel syndrome, antibiotic-associated diarrhea, hepatic encephalopathy, autism and metabolic syndrome. Research on Crohn’s disease, psoriasis, multiple sclerosis and Parkinson’s disease is still ongoing.

This part considers innovative concepts that an individual approach to each patient with appointment FMT and the basis of personalized medicine can improve clinical outcomes in patients with ulcerative colitis, irritable bowel syndrome, antibiotic-associated diarrhea, hepatic encephalopathy, autism and metabolic syndrome. So personalized FMT therapy in diseases not associated with Clostridium difficile would be a primary concrete practice for PPPM in the nearest future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Eslami M, Bahar A, Hemati M et al (2020) Dietary pattern, colonic microbiota and immunometabolism interaction: new frontiers for diabetes mellitus and related disorders. Diabet Med:e14415. https://doi.org/10.1111/dme.14415

  2. Macchione IG, Lopetuso LR, Ianiro G et al (2019) Akkermansia muciniphila: key player in metabolic and gastrointestinal disorders. Eur Rev Med Pharmacol Sci 23:8075–8083. https://doi.org/10.26355/eurrev_201909_19024

    Article  CAS  Google Scholar 

  3. Sivamaruthi BS, Kesika P, Suganthy N, Chaiyasut C (2019) A review on role of microbiome in obesity and antiobesity properties of probiotic supplements. Biomed Res Int 2019:1–20. https://doi.org/10.1155/2019/3291367

    Article  CAS  Google Scholar 

  4. Kobyliak N, Abenavoli L, Falalyeyeva T et al (2021) Metabolic benefits of probiotic combination with absorbent smectite in type 2 diabetes patients a randomised controlled trial. Rev Recent Clin Trials 16:109–119. https://doi.org/10.2174/1574887115666200709141131

    Article  CAS  Google Scholar 

  5. Mancabelli L, Milani C, Lugli GA et al (2017) Unveiling the gut microbiota composition and functionality associated with constipation through metagenomic analyses. Sci Rep 7:9879. https://doi.org/10.1038/s41598-017-10663-w

    Article  Google Scholar 

  6. Eslami M, Sadrifar S, Karbalaei M et al (2020) Importance of the microbiota inhibitory mechanism on the Warburg effect in colorectal cancer cells. J Gastrointest Cancer 51:738–747. https://doi.org/10.1007/s12029-019-00329-3

    Article  CAS  Google Scholar 

  7. Miyake S, Yamamura T (2019) Gut environmental factors and multiple sclerosis. J Neuroimmunol 329:20–23

    Article  CAS  Google Scholar 

  8. Kobyliak N, Abenavoli L, Mykhalchyshyn G et al (2019) Probiotics and smectite absorbent gel formulation reduce liver stiffness, transaminase and cytokine levels in NAFLD associated with type 2 diabetes: a randomized clinical study. Clin Diabetol 8:205–214. https://doi.org/10.5603/dk.2019.0016

    Article  CAS  Google Scholar 

  9. Golubnitschaja O, Liskova A, Koklesova L et al (2021) Caution, “normal” BMI: health risks associated with potentially masked individual underweight—EPMA Position Paper 2021. EPMA J 12:243–264. https://doi.org/10.1007/s13167-021-00251-4

    Article  Google Scholar 

  10. Abdelhamid AG, El-Masry SS, El-Dougdoug NK (2019) Probiotic Lactobacillus and Bifidobacterium strains possess safety characteristics, antiviral activities and host adherence factors revealed by genome mining. EPMA J 10:337–350. https://doi.org/10.1007/s13167-019-00184-z

    Article  Google Scholar 

  11. Zhang F, Luo W, Shi Y et al (2012) Should we standardize the 1,700-year-old fecal microbiota transplantation. Am J Gastroenterol 107:1755

    Article  Google Scholar 

  12. Eiseman B, Silen W, Bascom GS, Kauvar AJ (1958) Fecal enema as an adjunct in the treatment of pseudomembranous. Surgery 44:854–859

    CAS  Google Scholar 

  13. van Nood E, Vrieze A, Nieuwdorp M et al (2013) Duodenal infusion of donor feces for recurrent Clostridium difficile. N Engl J Med 368:407–415. https://doi.org/10.1056/nejmoa1205037

    Article  Google Scholar 

  14. Ott SJ, Waetzig GH, Rehman A et al (2017) Efficacy of sterile fecal filtrate transfer for treating patients with Clostridium difficile infection. Gastroenterology 152:799–811.e7. https://doi.org/10.1053/j.gastro.2016.11.010

    Article  Google Scholar 

  15. D’Haens GR, Jobin C (2019) Fecal microbial transplantation for diseases beyond recurrent clostridium difficile infection. Gastroenterology 157:624–636

    Article  Google Scholar 

  16. Giles EM, D’Adamo GL, Forster SC (2019) The future of faecal transplants. Nat Rev Microbiol 17:719–719. https://doi.org/10.1038/s41579-019-0271-9

    Article  CAS  Google Scholar 

  17. Tkach S, Dorofeyev A, Kuzenko I et al (2022) Current status and future therapeutic options for fecal microbiota transplantation. Medicina (Kaunas) 58:84. https://doi.org/10.3390/MEDICINA58010084

    Article  Google Scholar 

  18. Frank DN, St. Amand AL, Feldman RA et al (2007) Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci U S A 104:13780–13785. https://doi.org/10.1073/pnas.0706625104

    Article  CAS  Google Scholar 

  19. Guillemot FÇ, Colombel JF, Neut C et al (1991) Treatment of diversion colitis by short-chain fatty acids – prospective and double-blind study. Dis Colon Rectum 34:861–864. https://doi.org/10.1007/BF02049697

    Article  CAS  Google Scholar 

  20. Moayyedi P, Surette MG, Kim PT et al (2015) Fecal microbiota transplantation induces remission in patients with active ulcerative colitis in a randomized controlled trial. Gastroenterology 149:102–109.e6. https://doi.org/10.1053/j.gastro.2015.04.001

    Article  Google Scholar 

  21. Rossen NG, Fuentes S, Van Der Spek MJ et al (2015) Findings from a randomized controlled trial of fecal transplantation for patients with ulcerative colitis. Gastroenterology 149:110–118.e4. https://doi.org/10.1053/j.gastro.2015.03.045

    Article  Google Scholar 

  22. Paramsothy S, Kamm MA, Kaakoush NO et al (2017) Multidonor intensive faecal microbiota transplantation for active ulcerative colitis: a randomised placebo-controlled trial. Lancet 389:1218–1228. https://doi.org/10.1016/S0140-6736(17)30182-4

    Article  Google Scholar 

  23. Costello SP, Waters O, Bryant RV et al (2017) Short duration, low intensity, pooled fecal microbiota transplantation induces remission in patients with mild-moderately active ulcerative colitis: a randomised controlled trial. Gastroenterology 152:S198–S199. https://doi.org/10.1016/s0016-5085(17)30969-1

    Article  Google Scholar 

  24. Haifer C, Paramsothy S, Kaakoush NO et al (2022) Lyophilised oral faecal microbiota transplantation for ulcerative colitis (LOTUS): a randomised, double-blind, placebo-controlled trial. Lancet Gastroenterol Hepatol 7:141–151. https://doi.org/10.1016/S2468-1253(21)00400-3

    Article  Google Scholar 

  25. Shi Y, Dong Y, Huang W et al (2016) Fecal microbiota transplantation for ulcerative colitis: a systematic review and meta-analysis. PLoS One 11:e0157259. https://doi.org/10.1371/journal.pone.0157259

    Article  CAS  Google Scholar 

  26. Narula N, Kassam Z, Yuan Y et al (2017) Systematic review and meta-analysis: fecal microbiota transplantation for treatment of active ulcerative colitis. Inflamm Bowel Dis 23:1702–1709

    Article  Google Scholar 

  27. El Hage CN, Ghoneim S, Shah S et al (2022) Efficacy of fecal microbiota transplantation in the treatment of active ulcerative colitis: a systematic review and meta-analysis of double-blind randomized controlled trials. Inflamm Bowel Dis. https://doi.org/10.1093/IBD/IZAC135

  28. Tan X-Y, Xie Y-J, Liu X-L et al (2022) A systematic review and meta-analysis of randomized controlled trials of fecal microbiota transplantation for the treatment of inflammatory bowel disease. Evid Based Complement Alternat Med 2022:8266793. https://doi.org/10.1155/2022/8266793

    Article  Google Scholar 

  29. Shah H, Zezos P (2020) Pouchitis: diagnosis and management. Curr Opin Gastroenterol 36:41–47

    Article  Google Scholar 

  30. Segal JP, Ding NS, Worley G et al (2017) Systematic review with meta-analysis: the management of chronic refractory pouchitis with an evidence-based treatment algorithm. Aliment Pharmacol Ther 45:581–592

    Article  CAS  Google Scholar 

  31. Landy J, Walker AW, Li JV et al (2015) Variable alterations of the microbiota, without metabolic or immunological change, following faecal microbiota transplantation in patients with chronic pouchitis. Sci Rep 5:12955. https://doi.org/10.1038/srep12955

    Article  CAS  Google Scholar 

  32. Selvig D, Piceno Y, Terdiman J et al (2020) Fecal microbiota transplantation in Pouchitis: clinical, endoscopic, histologic, and microbiota results from a pilot study. Dig Dis Sci 65:1099–1106. https://doi.org/10.1007/s10620-019-05715-2

    Article  CAS  Google Scholar 

  33. Stallmach A, Lange K, Buening J et al (2016) Fecal microbiota transfer in patients with chronic antibiotic-refractory pouchitis. Am J Gastroenterol 111:441–443

    Article  Google Scholar 

  34. Herfarth H, Barnes EL, Long MD et al (2019) Combined endoscopic and oral fecal microbiota transplantation in patients with antibiotic-dependent pouchitis: low clinical efficacy due to low donor microbial engraftment. Inflamm Intest Dis 4:1–6. https://doi.org/10.1159/000497042

    Article  Google Scholar 

  35. Keshteli AH, Millan B, Madsen KL (2017) Pretreatment with antibiotics may enhance the efficacy of fecal microbiota transplantation in ulcerative colitis: a meta-analysis. Mucosal Immunol 10:565–566

    Article  CAS  Google Scholar 

  36. Castaño-Rodríguez N, Paramsothy S, Kaakoush NO (2020) Promise of fecal microbiota transplantation therapy in pouchitis. Dig Dis Sci 65:1107–1110

    Article  Google Scholar 

  37. Tominaga K, Tsuchiya A, Yokoyama J, Terai S (2019) How do you treat this diversion ileitis and pouchitis? Gut 68:593–758

    Article  Google Scholar 

  38. Paramsothy S, Paramsothy R, Rubin DT et al (2017) Faecal microbiota transplantation for inflammatory bowel disease: a systematic review and meta-analysis. J Crohns Colitis 11:1180–1199. https://doi.org/10.1093/ecco-jcc/jjx063

    Article  Google Scholar 

  39. Cold F, Kousgaard SJ, Halkjaer SI et al (2020) Fecal microbiota transplantation in the treatment of chronic pouchitis: a systematic review. Microorganisms 8:1433

    Article  Google Scholar 

  40. Vermeire S, Joossens M, Verbeke K et al (2016) Donor species richness determines faecal microbiota transplantation success in inflammatory bowel disease. J Crohns Colitis 10:387–394. https://doi.org/10.1093/ecco-jcc/jjv203

    Article  Google Scholar 

  41. Cui B, Feng Q, Wang H et al (2015) Fecal microbiota transplantation through mid-gut for refractory Crohn’s disease: safety, feasibility, and efficacy trial results. J Gastroenterol Hepatol 30:51–58. https://doi.org/10.1111/jgh.12727

    Article  CAS  Google Scholar 

  42. Suskind DL, Brittnacher MJ, Wahbeh G et al (2015) Fecal microbial transplant effect on clinical outcomes and fecal microbiome in active Crohn’s disease. Inflamm Bowel Dis 21:556–563. https://doi.org/10.1097/MIB.0000000000000307

    Article  Google Scholar 

  43. Colman RJ, Rubin DT (2014) Fecal microbiota transplantation as therapy for inflammatory bowel disease: a systematic review and meta-analysis. J Crohns Colitis 8:1569–1581

    Article  Google Scholar 

  44. de Fátima Caldeira L, Borba HH, Tonin FS et al (2020) Fecal microbiota transplantation in inflammatory bowel disease patients: a systematic review and meta-analysis. PLoS One 15:e0238910. https://doi.org/10.1371/journal.pone.0238910

    Article  CAS  Google Scholar 

  45. Sokol H, Landman C, Seksik P et al (2020) Fecal microbiota transplantation to maintain remission in Crohn’s disease: a pilot randomized controlled study. Microbiome 8:12. https://doi.org/10.1186/s40168-020-0792-5

    Article  CAS  Google Scholar 

  46. Wang H, Cui B, Li Q et al (2018) The safety of fecal microbiota transplantation for Crohn’s disease: findings from a long-term study. Adv Ther 35:1935–1944. https://doi.org/10.1007/s12325-018-0800-3

    Article  Google Scholar 

  47. Shen Z, Zhu C, Quan Y et al (2017) Update on intestinal microbiota in Crohn’s disease 2017: mechanisms, clinical application, adverse reactions, and outlook. J Gastroenterol Hepatol 32:1804–1812

    Article  Google Scholar 

  48. Rajilić-Stojanović M, Biagi E, Heilig HGHJ et al (2011) Global and deep molecular analysis of microbiota signatures in fecal samples from patients with irritable bowel syndrome. Gastroenterology 141:1792–1801. https://doi.org/10.1053/j.gastro.2011.07.043

    Article  CAS  Google Scholar 

  49. Johnsen PH, Hilpüsch F, Cavanagh JP et al (2018) Faecal microbiota transplantation versus placebo for moderate-to-severe irritable bowel syndrome: a double-blind, randomised, placebo-controlled, parallel-group, single-centre trial. Lancet Gastroenterol Hepatol 3:17–24. https://doi.org/10.1016/S2468-1253(17)30338-2

    Article  Google Scholar 

  50. Halkjær SI, Christensen AH, Lo BZS et al (2018) Faecal microbiota transplantation alters gut microbiota in patients with irritable bowel syndrome: results from a randomised, double-blind placebo-controlled study. Gut 67:2107–2115. https://doi.org/10.1136/gutjnl-2018-316434

    Article  CAS  Google Scholar 

  51. Holvoet T, Joossens M, Vázquez-Castellanos JF et al (2021) Fecal microbiota transplantation reduces symptoms in some patients with irritable bowel syndrome with predominant abdominal bloating: short- and Long-term results from a placebo-controlled randomized trial. Gastroenterology 160:145–157.e8. https://doi.org/10.1053/j.gastro.2020.07.013

    Article  CAS  Google Scholar 

  52. Aroniadis OC, Brandt LJ, Oneto C et al (2019) Faecal microbiota transplantation for diarrhoea-predominant irritable bowel syndrome: a double-blind, randomised, placebo-controlled trial. Lancet Gastroenterol Hepatol 4:675–685. https://doi.org/10.1016/S2468-1253(19)30198-0

    Article  Google Scholar 

  53. Xu D, Chen VL, Steiner CA et al (2019) Efficacy of fecal microbiota transplantation in irritable bowel syndrome: a systematic review and meta-analysis. Am J Gastroenterol 114:1043–1050

    Article  Google Scholar 

  54. Ianiro G, Eusebi LH, Black CJ et al (2019) Systematic review with meta-analysis: efficacy of faecal microbiota transplantation for the treatment of irritable bowel syndrome. Aliment Pharmacol Ther 50:240–248

    Article  Google Scholar 

  55. Wu J, Lv L, Wang C (2022) Efficacy of fecal microbiota transplantation in irritable bowel syndrome: a meta-analysis of randomized controlled trials. Front Cell Infect Microbiol 12:827395. https://doi.org/10.3389/FCIMB.2022.827395

    Article  Google Scholar 

  56. Zhao H, Zhang X, Zhang N et al (2022) Fecal microbiota transplantation for patients with irritable bowel syndrome: a meta-analysis of randomized controlled trials. Front Nutr 9:890357. https://doi.org/10.3389/FNUT.2022.890357

    Article  Google Scholar 

  57. Myneedu K, Deoker A, Schmulson MJ, Bashashati M (2019) Fecal microbiota transplantation in irritable bowel syndrome: a systematic review and meta-analysis. United Eur Gastroenterol J 7:1033–1041

    Article  Google Scholar 

  58. Benno P, Norin E, Midtvedt T, Hellström PM (2019) Therapeutic potential of an anaerobic cultured human intestinal microbiota, ACHIM, for treatment of IBS. Best Pract Res Clin Gastroenterol 40–41:101607

    Article  Google Scholar 

  59. El-Salhy M, Hatlebakk JG, Gilja OH et al (2020) Efficacy of faecal microbiota transplantation for patients with irritable bowel syndrome in a randomised, double-blind, placebo-controlled study. Gut 69:859–867. https://doi.org/10.1136/gutjnl-2019-319630

    Article  CAS  Google Scholar 

  60. König J, Brummer RJ (2020) Faecal microbiota transplantation in IBS—new evidence for success? Nat Rev Gastroenterol Hepatol 17:199–200. https://doi.org/10.1038/s41575-020-0282-z

    Article  Google Scholar 

  61. El-Salhy M, Winkel R, Casen C et al (2022) Efficacy of fecal microbiota transplantation for patients with irritable bowel syndrome at three years after transplantation. Gastroenterology. https://doi.org/10.1053/J.GASTRO.2022.06.020

  62. Singh P, Alm EJ, Kelley JM et al (2022) Effect of antibiotic pretreatment on bacterial engraftment after fecal microbiota transplant (FMT) in IBS-D. Gut Microbes 14:2020067. https://doi.org/10.1080/19490976.2021.2020067

    Article  CAS  Google Scholar 

  63. Mazzawi T, Hausken T, El-Salhy M (2022) Changes in colonic enteroendocrine cells of patients with irritable bowel syndrome following fecal microbiota transplantation. Scand J Gastroenterol 57:792–796. https://doi.org/10.1080/00365521.2022.2036809

    Article  CAS  Google Scholar 

  64. Mosso E, Boano V, Grassini M et al (2019) Microscopic colitis: a narrative review with clinical approach. Minerva Gastroenterol Dietol 65:53–62

    Article  Google Scholar 

  65. Günaltay S, Rademacher L, Hörnquist EH, Bohr J (2017) Clinical and immunologic effects of faecal microbiota transplantation in a patient with collagenous colitis. World J Gastroenterol 23:1319–1324. https://doi.org/10.3748/wjg.v23.i7.1319

    Article  Google Scholar 

  66. Tariq R, Smyrk T, Pardi DS et al (2016) New-onset microscopic colitis in an ulcerative colitis patient after fecal microbiota transplantation. Am J Gastroenterol 111:751–752

    Article  Google Scholar 

  67. Holster S, Rode J, Bohr J et al (2020) Faecal microbiota transfer in patients with microscopic colitis – a pilot study in collagenous colitis. Scand J Gastroenterol 55:1454–1466. https://doi.org/10.1080/00365521.2020.1839544

    Article  CAS  Google Scholar 

  68. Tian H, Ge X, Nie Y et al (2017) Fecal microbiota transplantation in patients with slow-transit constipation: a randomized, clinical trial. PLoS One 12:e0171308. https://doi.org/10.1371/journal.pone.0171308

    Article  CAS  Google Scholar 

  69. Tian Y, Zuo L, Guo Q et al (2020) Potential role of fecal microbiota in patients with constipation. Ther Adv Gastroenterol 13:1756284820968423. https://doi.org/10.1177/1756284820968423

    Article  CAS  Google Scholar 

  70. Ding C, Fan W, Gu L et al (2018) Outcomes and prognostic factors of fecal microbiota transplantation in patients with slow transit constipation: results from a prospective study with long-term follow-up. Gastroenterol Rep 6:101–107. https://doi.org/10.1093/gastro/gox036

    Article  Google Scholar 

  71. Zhang X, Tian H, Gu L et al (2018) Long-term follow-up of the effects of fecal microbiota transplantation in combination with soluble dietary fiber as a therapeutic regimen in slow transit constipation. Sci China Life Sci 61:779–786. https://doi.org/10.1007/s11427-017-9229-1

    Article  CAS  Google Scholar 

  72. Wortelboer K, Nieuwdorp M, Herrema H (2019) Fecal microbiota transplantation beyond Clostridioides difficile infections. EBioMedicine 44:716–729

    Article  Google Scholar 

  73. Suez J, Zmora N, Zilberman-Schapira G et al (2018) Post-antibiotic gut mucosal microbiome reconstitution is impaired by probiotics and improved by autologous FMT. Cell 174:1406–1423.e16. https://doi.org/10.1016/j.cell.2018.08.047

    Article  CAS  Google Scholar 

  74. Ianiro G, Segal JP, Mullish BH et al (2020) Fecal microbiota transplantation in gastrointestinal and extraintestinal disorders. Future Microbiol 15:1173–1186

    Article  CAS  Google Scholar 

  75. Michot JM, Bigenwald C, Champiat S et al (2016) Immune-related adverse events with immune checkpoint blockade: a comprehensive review. Eur J Cancer 54:139–148

    Article  CAS  Google Scholar 

  76. Wang Y, Wiesnoski DH, Helmink BA et al (2018) Fecal microbiota transplantation for refractory immune checkpoint inhibitor-associated colitis. Nat Med 24:1804–1808. https://doi.org/10.1038/s41591-018-0238-9

    Article  CAS  Google Scholar 

  77. Wardill HR, Secombe KR, Bryant RV et al (2019) Adjunctive fecal microbiota transplantation in supportive oncology: emerging indications and considerations in immunocompromised patients. EBioMedicine 44:730–740

    Article  CAS  Google Scholar 

  78. Wong SH, Zhao L, Zhang X et al (2017) Gavage of fecal samples from patients with colorectal cancer promotes intestinal carcinogenesis in germ-free and conventional mice. Gastroenterology 153:1621–1633.e6. https://doi.org/10.1053/j.gastro.2017.08.022

    Article  Google Scholar 

  79. Ma C, Han M, Heinrich B et al (2018) Gut microbiome–mediated bile acid metabolism regulates liver cancer via NKT cells. Science (80-) 360:eaan5931. https://doi.org/10.1126/science.aan5931

    Article  CAS  Google Scholar 

  80. Pushalkar S, Hundeyin M, Daley D et al (2018) The pancreatic cancer microbiome promotes oncogenesis by induction of innate and adaptive immune suppression. Cancer Discov 8:403–416. https://doi.org/10.1158/2159-8290.CD-17-1134

    Article  CAS  Google Scholar 

  81. Kobyliak N, Abenavoli L, Falalyeyeva T et al (2016) Prevention of NAFLD development in rats with obesity via the improvement of pro/antioxidant state by cerium dioxide nanoparticles. Clujul Med 89:229–235. https://doi.org/10.15386/cjmed-632

    Article  Google Scholar 

  82. Mykhalchyshyn G, Kobyliak N, Bodnar P (2015) Diagnostic accuracy of acyl-ghrelin and it association with non-alcoholic fatty liver disease in type 2 diabetic patients. J Diabetes Metab Disord 14. https://doi.org/10.1186/s40200-015-0170-1

  83. Lechner S, Yee M, Limketkai BN, Pham EA (2020) Fecal microbiota transplantation for chronic liver diseases: current understanding and future direction. Dig Dis Sci 65:897–905

    Article  CAS  Google Scholar 

  84. Shasthry SM (2020) Fecal microbiota transplantation in alcohol related liver diseases. Clin Mol Hepatol 26:294–301. https://doi.org/10.3350/cmh.2020.0057

    Article  Google Scholar 

  85. Thursz MR, Richardson P, Allison M et al (2015) Prednisolone or pentoxifylline for alcoholic hepatitis. N Engl J Med 372:1619–1628. https://doi.org/10.1056/nejmoa1412278

    Article  CAS  Google Scholar 

  86. Philips CA, Pande A, Shasthry SM et al (2017) Healthy donor fecal microbiota transplantation in steroid-ineligible severe alcoholic hepatitis: a pilot study. Clin Gastroenterol Hepatol 15:600–602

    Article  Google Scholar 

  87. Philips CA, Phadke N, Ganesan K et al (2018) Corticosteroids, nutrition, pentoxifylline, or fecal microbiota transplantation for severe alcoholic hepatitis. Indian J Gastroenterol 37:215–225. https://doi.org/10.1007/s12664-018-0859-4

    Article  Google Scholar 

  88. Sharma A, Roy A, Premkumar M et al (2022) Fecal microbiota transplantation in alcohol-associated acute-on-chronic liver failure: an open-label clinical trial. Hepatol Int 16:433–446. https://doi.org/10.1007/S12072-022-10312-Z

    Article  Google Scholar 

  89. Williamson KD, Chapman RW (2016) New therapeutic strategies for primary sclerosing cholangitis. Semin Liver Dis 36:5–14. https://doi.org/10.1055/s-0035-1571274

    Article  CAS  Google Scholar 

  90. Rodriguez EA, Carey EJ, Lindor KD (2017) Emerging treatments for primary sclerosing cholangitis. Expert Rev Gastroenterol Hepatol 11:451–459

    Article  CAS  Google Scholar 

  91. Shah A, MacDonald GA, Morrison M, Holtmann G (2020) Targeting the gut microbiome as a treatment for primary sclerosing cholangitis: a conceptional framework. Am J Gastroenterol 115:814–822

    Article  Google Scholar 

  92. Tripathi A, Debelius J, Brenner DA et al (2018) The gut-liver axis and the intersection with the microbiome. Nat Rev Gastroenterol Hepatol 15:397–411

    Article  CAS  Google Scholar 

  93. Little R, Wine E, Kamath BM et al (2020) Gut microbiome in primary sclerosing cholangitis: a review. World J Gastroenterol 26:2768–2780

    Article  CAS  Google Scholar 

  94. Rahimpour S, Nasiri-Toosi M, Khalili H et al (2016) A triple blinded, randomized, placebo-controlled clinical trial to evaluate the efficacy and safety of oral vancomycin in primary sclerosing cholangitis: a pilot study. J Gastrointest Liver Dis 25:457–464. https://doi.org/10.15403/jgld.2014.1121.254.rah

    Article  Google Scholar 

  95. Ali AH, Carey EJ, Lindor KD (2016) The microbiome and primary sclerosing cholangitis. Semin Liver Dis 36:340–348. https://doi.org/10.1055/s-0036-1594007

    Article  CAS  Google Scholar 

  96. Philips CA, Augustine P, Phadke N (2018) Healthy donor fecal microbiota transplantation for recurrent bacterial cholangitis in primary sclerosing cholangitis – a single case report. J Clin Transl Hepatol 6:438–441. https://doi.org/10.14218/JCTH.2018.00033

    Article  Google Scholar 

  97. Allegretti JR, Kassam Z, Carrellas M et al (2019) Fecal microbiota transplantation in patients with primary sclerosing cholangitis: a pilot clinical trial. Am J Gastroenterol 114:1071–1079. https://doi.org/10.14309/ajg.0000000000000115

    Article  Google Scholar 

  98. Lavanchy D (2004) Hepatitis B virus epidemiology, disease burden, treatment, arid current and emerging prevention and control measures. J Viral Hepat 11:97–107

    Article  CAS  Google Scholar 

  99. Kang Y, Cai Y (2017) Gut microbiota and hepatitis-B-virus-induced chronic liver disease: implications for faecal microbiota transplantation therapy. J Hosp Infect 96:342–348

    Article  CAS  Google Scholar 

  100. Ren YD, Ye ZS, Yang LZ et al (2017) Fecal microbiota transplantation induces hepatitis B virus e-antigen (HBeAg) clearance in patients with positive HBeAg after long-term antiviral therapy. Hepatology 65:1765–1768. https://doi.org/10.1002/hep.29008

    Article  Google Scholar 

  101. Chauhan A, Kumar R, Sharma S et al (2020) Fecal microbiota transplantation in hepatitis B e antigen-positive chronic hepatitis B patients: a pilot study. Dig Dis Sci. https://doi.org/10.1007/s10620-020-06246-x

  102. Terrault NA, Bzowej NH, Chang KM et al (2016) AASLD guidelines for treatment of chronic hepatitis B. Hepatology 63:261–283. https://doi.org/10.1002/hep.28156

    Article  Google Scholar 

  103. Ebrahimzadeh Leylabadlo H, Ghotaslou R, Samadi Kafil H et al (2020) Non-alcoholic fatty liver diseases: from role of gut microbiota to microbial-based therapies. Eur J Clin Microbiol Infect Dis 39:613–627

    Article  Google Scholar 

  104. Falalyeyeva T, Komisarenko I, Yanchyshyn A et al (2021) Vitamin D in the prevention and treatment of type-2 diabetes and associated diseases: a critical view during COVID-19 time. Minerva Biotechnol Biomol Res 33:65–75. https://doi.org/10.23736/S2724-542X.21.02766-X

    Article  Google Scholar 

  105. Koopman N, Molinaro A, Nieuwdorp M, Holleboom AG (2019) Review article: can bugs be drugs? The potential of probiotics and prebiotics as treatment for non-alcoholic fatty liver disease. Aliment Pharmacol Ther 50:628–639

    Article  Google Scholar 

  106. Abenavoli L, Falalyeyeva T, Pellicano R et al (2020) Next-generation of strain specific probiotics in diabetes treatment: the case of Prevotella copri. Minerva Endocrinol 45:277–279. https://doi.org/10.23736/S0391-1977.20.03376-3

    Article  Google Scholar 

  107. Zhou D, Pan Q, Shen F et al (2017) Total fecal microbiota transplantation alleviates high-fat diet-induced steatohepatitis in mice via beneficial regulation of gut microbiota. Sci Rep 7:1529. https://doi.org/10.1038/s41598-017-01751-y

    Article  CAS  Google Scholar 

  108. Chiu CC, Ching YH, Li YP et al (2017) Nonalcoholic fatty liver disease is exacerbated in high-fat diet-fed gnotobiotic mice by colonization with the gut microbiota from patients with nonalcoholic steatohepatitis. Nutrients 9:1220. https://doi.org/10.3390/nu9111220

    Article  CAS  Google Scholar 

  109. Sharpton SR, Ajmera V, Loomba R (2019) Emerging role of the gut microbiome in nonalcoholic fatty liver disease: from composition to function. Clin Gastroenterol Hepatol 17:296–306

    Article  CAS  Google Scholar 

  110. Craven L, Rahman A, Nair Parvathy S et al (2020) Allogenic fecal microbiota transplantation in patients with nonalcoholic fatty liver disease improves abnormal small intestinal permeability: a randomized control trial. Am J Gastroenterol 115:1055–1065. https://doi.org/10.14309/ajg.0000000000000661

    Article  Google Scholar 

  111. Witjes JJ, Smits LP, Pekmez CT et al (2020) Donor fecal microbiota transplantation alters gut microbiota and metabolites in obese individuals with steatohepatitis. Hepatol Commun 4:1578–1590. https://doi.org/10.1002/hep4.1601

    Article  CAS  Google Scholar 

  112. Manzhalii E, Moyseyenko V, Kondratiuk V et al (2022) Effect of a specific Escherichia coli Nissle 1917 strain on minimal/mild hepatic encephalopathy treatment. World J Hepatol 14:634–646. https://doi.org/10.4254/WJH.V14.I3.634

    Article  Google Scholar 

  113. Wang WW, Zhang Y, Huang XB et al (2017) Fecal microbiota transplantation prevents hepatic encephalopathy in rats with carbon tetrachloride-induced acute hepatic dysfunction. World J Gastroenterol 23:6983–6994. https://doi.org/10.3748/wjg.v23.i38.6983

    Article  CAS  Google Scholar 

  114. Bajaj JS, Kassam Z, Fagan A et al (2017) Fecal microbiota transplant from a rational stool donor improves hepatic encephalopathy: a randomized clinical trial. Hepatology 66:1727–1738. https://doi.org/10.1002/hep.29306

    Article  CAS  Google Scholar 

  115. Bajaj JS, Fagan A, Gavis EA et al (2019) Long-term outcomes of fecal microbiota transplantation in patients with cirrhosis. Gastroenterology 156:1921–1923.e3. https://doi.org/10.1053/j.gastro.2019.01.033

    Article  Google Scholar 

  116. Hu Y, Xiao HY, He C et al (2019) Fecal microbiota transplantation as an effective initial therapy for pancreatitis complicated with severe Clostridium difficile infection: a case report. World J Clin Cases 7:2597–2604. https://doi.org/10.12998/wjcc.v7.i17.2597

    Article  Google Scholar 

  117. Taşdemir M, Hasan C, Ağbaş A et al (2016) Sjögren’s syndrome associated with systemic lupus erythematosus. Turkish Arch Pediatr Pediatr Arşivi 51:166–168. https://doi.org/10.5152/TURKPEDIATRIARS.2016.2001

    Article  Google Scholar 

  118. Huang C, Yi P, Zhu M et al (2022) Safety and efficacy of fecal microbiota transplantation for treatment of systemic lupus erythematosus: an EXPLORER trial. J Autoimmun 130:102844. https://doi.org/10.1016/J.JAUT.2022.102844

    Article  CAS  Google Scholar 

  119. Watane A, Cavuoto KM, Rojas M et al (2022) Fecal microbial transplant in individuals with immune-mediated dry eye. Am J Ophthalmol 233:90–100. https://doi.org/10.1016/J.AJO.2021.06.022

    Article  CAS  Google Scholar 

  120. Benhadou F, Mintoff D, Schnebert B, Thio H (2018) Psoriasis and microbiota: a systematic review. Diseases 6:47. https://doi.org/10.3390/diseases6020047

    Article  CAS  Google Scholar 

  121. Yin G, Li JF, Sun YF et al (2019) Fecal microbiota transplantation as a novel therapy for severe psoriasis. Zhonghua Nei Ke Za Zhi 58:782–785. https://doi.org/10.3760/cma.j.issn.0578-1426.2019.10.011

    Article  CAS  Google Scholar 

  122. Kragsnaes MS, Kjeldsen J, Horn HC et al (2018) Efficacy and safety of faecal microbiota transplantation in patients with psoriatic arthritis: protocol for a 6-month, double-blind, randomised, placebo-controlled trial. BMJ Open 8:e019231

    Article  Google Scholar 

  123. Chen J, Chia N, Kalari KR et al (2016) Multiple sclerosis patients have a distinct gut microbiota compared to healthy controls. Sci Rep 6:28484. https://doi.org/10.1038/srep28484

    Article  CAS  Google Scholar 

  124. Lee YK, Menezes JS, Umesaki Y, Mazmanian SK (2011) Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A 108:4615–4622. https://doi.org/10.1073/pnas.1000082107

    Article  Google Scholar 

  125. Berer K, Gerdes LA, Cekanaviciute E et al (2017) Gut microbiota from multiple sclerosis patients enables spontaneous autoimmune encephalomyelitis in mice. Proc Natl Acad Sci U S A 114:10719–10724. https://doi.org/10.1073/pnas.1711233114

    Article  CAS  Google Scholar 

  126. Li K, Wei S, Hu L et al (2020) Protection of fecal microbiota transplantation in a mouse model of multiple sclerosis. Mediat Inflamm 2020:2058272. https://doi.org/10.1155/2020/2058272

    Article  CAS  Google Scholar 

  127. Borody T, Leis S, Campbell J et al (2011) Fecal microbiota transplantation (FMT) in multiple sclerosis (MS). Am J Gastroenterol 106:S352. https://doi.org/10.14309/00000434-201110002-00942

    Article  Google Scholar 

  128. Makkawi S, Camara-Lemarroy C, Metz L (2018) Fecal microbiota transplantation associated with 10 years of stability in a patient with SPMS. Neurol Neuroimmunol NeuroInflammation 5:e459. https://doi.org/10.1212/NXI.0000000000000459

    Article  Google Scholar 

  129. Engen PA, Zaferiou A, Rasmussen H et al (2020) Single-arm, non-randomized, time series, single-subject study of fecal microbiota transplantation in multiple sclerosis. Front Neurol 11:978. https://doi.org/10.3389/fneur.2020.00978

    Article  Google Scholar 

  130. Forsyth CB, Shannon KM, Kordower JH et al (2011) Increased intestinal permeability correlates with sigmoid mucosa alpha-synuclein staining and endotoxin exposure markers in early Parkinson’s disease. PLoS One 6:e28032. https://doi.org/10.1371/journal.pone.0028032

    Article  CAS  Google Scholar 

  131. Tan AH, Mahadeva S, Thalha AM et al (2014) Small intestinal bacterial overgrowth in Parkinson’s disease. Park Relat Disord 20:535–540. https://doi.org/10.1016/j.parkreldis.2014.02.019

    Article  Google Scholar 

  132. Keshavarzian A, Green SJ, Engen PA et al (2015) Colonic bacterial composition in Parkinson’s disease. Mov Disord 30:1351–1360. https://doi.org/10.1002/mds.26307

    Article  CAS  Google Scholar 

  133. Scheperjans F, Aho V, Pereira PAB et al (2015) Gut microbiota are related to Parkinson’s disease and clinical phenotype. Mov Disord 30:350–358. https://doi.org/10.1002/mds.26069

    Article  Google Scholar 

  134. Sampson TR, Debelius JW, Thron T et al (2016) Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell 167:1469–1480.e12. https://doi.org/10.1016/j.cell.2016.11.018

    Article  CAS  Google Scholar 

  135. Sun MF, Zhu YL, Zhou ZL et al (2018) Neuroprotective effects of fecal microbiota transplantation on MPTP-induced Parkinson’s disease mice: gut microbiota, glial reaction and TLR4/TNF-α signaling pathway. Brain Behav Immun 70:48–60. https://doi.org/10.1016/j.bbi.2018.02.005

    Article  CAS  Google Scholar 

  136. Zhou ZL, Jia XB, Sun MF et al (2019) Neuroprotection of fasting mimicking diet on MPTP-induced Parkinson’s disease mice via gut microbiota and metabolites. Neurotherapeutics 16:741–760. https://doi.org/10.1007/s13311-019-00719-2

    Article  CAS  Google Scholar 

  137. Huang H, Xu H, Luo Q et al (2019) Fecal microbiota transplantation to treat Parkinson’s disease with constipation: a case report. Medicine (Baltimore) 98:e16163. https://doi.org/10.1097/MD.0000000000016163

    Article  Google Scholar 

  138. Xue LJ, Yang XZ, Tong Q et al (2020) Fecal microbiota transplantation therapy for Parkinson’s disease: a preliminary study. Medicine (Baltimore) 99:e22035. https://doi.org/10.1097/MD.0000000000022035

    Article  Google Scholar 

  139. Vendrik KEW, Ooijevaar RE, de Jong PRC et al (2020) Fecal microbiota transplantation in neurological disorders. Front Cell Infect Microbiol 10:98

    Article  CAS  Google Scholar 

  140. Fattorusso A, Di Genova L, Dell’isola GB et al (2019) Autism spectrum disorders and the gut microbiota. Nutrients 11:521

    Article  CAS  Google Scholar 

  141. Slykerman RF, Thompson J, Waldie KE et al (2017) Antibiotics in the first year of life and subsequent neurocognitive outcomes. Acta Paediatr Int J Paediatr 106:87–94. https://doi.org/10.1111/apa.13613

    Article  Google Scholar 

  142. McElhanon BO, McCracken C, Karpen S, Sharp WG (2014) Gastrointestinal symptoms in autism spectrum disorder: a meta-analysis. Pediatrics 133:872–883. https://doi.org/10.1542/peds.2013-3995

    Article  Google Scholar 

  143. Tomova A, Husarova V, Lakatosova S et al (2015) Gastrointestinal microbiota in children with autism in Slovakia. Physiol Behav 138:179–187. https://doi.org/10.1016/j.physbeh.2014.10.033

    Article  CAS  Google Scholar 

  144. Hsiao EY, McBride SW, Hsien S et al (2013) Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell 155:1451–1463. https://doi.org/10.1016/j.cell.2013.11.024

    Article  CAS  Google Scholar 

  145. Sharon G, Cruz NJ, Kang DW et al (2019) Human gut microbiota from autism spectrum disorder promote behavioral symptoms in mice. Cell 177:1600–1618.e17. https://doi.org/10.1016/j.cell.2019.05.004

    Article  CAS  Google Scholar 

  146. Aabed K, Bhat RS, Moubayed N et al (2019) Ameliorative effect of probiotics (lactobacillus paracaseii and Protexin®) and prebiotics (propolis and bee pollen) on clindamycin and propionic acid-induced oxidative stress and altered gut microbiota in a rodent model of autism. Cell Mol Biol 65:1–7. https://doi.org/10.14715/cmb/2019.65.1.1

    Article  Google Scholar 

  147. Kang DW, Adams JB, Gregory AC et al (2017) Microbiota transfer therapy alters gut ecosystem and improves gastrointestinal and autism symptoms: an open-label study. Microbiome 5:10. https://doi.org/10.1186/s40168-016-0225-7

    Article  Google Scholar 

  148. Kang DW, Adams JB, Coleman DM et al (2019) Long-term benefit of microbiota transfer therapy on autism symptoms and gut microbiota. Sci Rep 9:5821. https://doi.org/10.1038/s41598-019-42183-0

    Article  CAS  Google Scholar 

  149. Zhao H, Gao X, Xi L et al (2019) Mo1667 fecal microbiota transplantation for children with autism spectrum disorder. Gastrointest Endosc 89:AB512–AB513. https://doi.org/10.1016/j.gie.2019.03.857

    Article  Google Scholar 

  150. Xu H-M, Huang H-L, Zhou Y-L et al (2021) Fecal microbiota transplantation: a new therapeutic attempt from the gut to the brain. Gastroenterol Res Pract 2021:6699268. https://doi.org/10.1155/2021/6699268

    Article  Google Scholar 

  151. Lum GR, Olson CA, Hsiao EY (2020) Emerging roles for the intestinal microbiome in epilepsy. Neurobiol Dis 135:104576

    Article  CAS  Google Scholar 

  152. Peng A, Qiu X, Lai W et al (2018) Altered composition of the gut microbiome in patients with drug-resistant epilepsy. Epilepsy Res 147:102–107. https://doi.org/10.1016/j.eplepsyres.2018.09.013

    Article  CAS  Google Scholar 

  153. Lindefeldt M, Eng A, Darban H et al (2019) The ketogenic diet influences taxonomic and functional composition of the gut microbiota in children with severe epilepsy. npj Biofilms Microbiomes 5:5. https://doi.org/10.1038/s41522-018-0073-2

    Article  Google Scholar 

  154. Dahlin M, Prast-Nielsen S (2019) The gut microbiome and epilepsy. EBioMedicine 44:741–746

    Article  Google Scholar 

  155. Medel-Matus JS, Shin D, Dorfman E et al (2018) Facilitation of kindling epileptogenesis by chronic stress may be mediated by intestinal microbiome. Epilepsia Open 3:290–294. https://doi.org/10.1002/epi4.12114

    Article  Google Scholar 

  156. Olson CA, Vuong HE, Yano JM et al (2018) The gut microbiota mediates the anti-seizure effects of the ketogenic diet. Cell 173:1728–1741.e13. https://doi.org/10.1016/j.cell.2018.04.027

    Article  CAS  Google Scholar 

  157. He Z, Cui BT, Zhang T et al (2017) Fecal microbiota transplantation cured epilepsy in a case with Crohn’s disease: the first report. World J Gastroenterol 23:3565–3568. https://doi.org/10.3748/wjg.v23.i19.3565

    Article  Google Scholar 

  158. Castaner O, Goday A, Park Y-M et al (2018) The gut microbiome profile in obesity: a systematic review. Int J Endocrinol 2018:1–9. https://doi.org/10.1155/2018/4095789

    Article  Google Scholar 

  159. Kobyliak N, Falalyeyeva T, Boyko N et al (2018) Probiotics and nutraceuticals as a new frontier in obesity prevention and management. Diabetes Res Clin Pract 141:190–199. https://doi.org/10.1016/j.diabres.2018.05.005

    Article  CAS  Google Scholar 

  160. Pasolli E, Truong DT, Malik F et al (2016) Machine learning meta-analysis of large metagenomic datasets: tools and biological insights. PLoS Comput Biol 12:e1004977. https://doi.org/10.1371/journal.pcbi.1004977

    Article  CAS  Google Scholar 

  161. Kyriachenko Y, Falalyeyeva T, Korotkyi O et al (2019) Crosstalk between gut microbiota and antidiabetic drug action. World J Diabetes 10:154–168. https://doi.org/10.4239/wjd.v10.i3.154

    Article  Google Scholar 

  162. Kobyliak N, Falalyeyeva T, Tsyryuk O et al (2020) New insights on strain-specific impacts of probiotics on insulin resistance: evidence from animal study. J Diabetes Metab Disord 19:289–296. https://doi.org/10.1007/s40200-020-00506-3

    Article  CAS  Google Scholar 

  163. Kobyliak N, Falalyeyeva T, Mykhalchyshyn G et al (2020) Probiotic and omega-3 polyunsaturated fatty acids supplementation reduces insulin resistance, improves glycemia and obesity parameters in individuals with type 2 diabetes: a randomised controlled trial. Obes Med 19:100248. https://doi.org/10.1016/j.obmed.2020.100248

    Article  Google Scholar 

  164. Vrieze A, Van Nood E, Holleman F et al (2012) Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 143:913–916. https://doi.org/10.1053/j.gastro.2012.06.031

    Article  CAS  Google Scholar 

  165. Kootte RS, Levin E, Salojärvi J et al (2017) Improvement of insulin sensitivity after lean donor feces in metabolic syndrome is driven by baseline intestinal microbiota composition. Cell Metab 26:611–619.e6. https://doi.org/10.1016/j.cmet.2017.09.008

    Article  CAS  Google Scholar 

  166. Allegretti JR, Kassam Z, Mullish BH et al (2020) Effects of fecal microbiota transplantation with oral capsules in obese patients. Clin Gastroenterol Hepatol 18:855–863.e2. https://doi.org/10.1016/j.cgh.2019.07.006

    Article  CAS  Google Scholar 

  167. Allegretti JR, Kassam Z, Hurtado J et al (2021) Impact of fecal microbiota transplantation with capsules on the prevention of metabolic syndrome among patients with obesity. Hormones 20:209–211

    Article  Google Scholar 

  168. Yu EW, Gao L, Stastka P et al (2020) Fecal microbiota transplantation for the improvement of metabolism in obesity: the FMT-TRIM double-blind placebo-controlled pilot trial. PLoS Med 17:e1003051. https://doi.org/10.1371/journal.pmed.1003051

    Article  CAS  Google Scholar 

  169. Zhang Z, Mocanu V, Cai C et al (2019) Impact of fecal microbiota transplantation on obesity and metabolic syndrome—a systematic review. Nutrients 11:2291. https://doi.org/10.3390/nu11102291

    Article  CAS  Google Scholar 

  170. Proença IM, Allegretti JR, Bernardo WM et al (2020) Fecal microbiota transplantation improves metabolic syndrome parameters: systematic review with meta-analysis based on randomized clinical trials. Nutr Res 83:1–14

    Article  Google Scholar 

  171. Guirro M, Costa A, Gual-Grau A et al (2019) Effects from diet-induced gut microbiota dysbiosis and obesity can be ameliorated by fecal microbiota transplantation: a multiomics approach. PLoS One 14:e0218143. https://doi.org/10.1371/journal.pone.0218143

    Article  CAS  Google Scholar 

  172. Tsaban G, Yaskolka Meir A, Rinott E et al (2020) The effect of green Mediterranean diet on cardiometabolic risk; a randomised controlled trial. Heart. https://doi.org/10.1136/heartjnl-2020-317802

  173. Rinott E, Youngster I, Yaskolka Meir A et al (2021) Effects of diet-modulated autologous fecal microbiota transplantation on weight regain. Gastroenterology 160:158–173.e10. https://doi.org/10.1053/j.gastro.2020.08.041

    Article  CAS  Google Scholar 

  174. Su L, Hong Z, Zhou T et al (2022) Health improvements of type 2 diabetic patients through diet and diet plus fecal microbiota transplantation. Sci Rep 12:1152. https://doi.org/10.1038/S41598-022-05127-9

    Article  CAS  Google Scholar 

  175. Ng SC, Xu Z, Mak JWY et al (2022) Microbiota engraftment after faecal microbiota transplantation in obese subjects with type 2 diabetes: a 24-week, double-blind, randomised controlled trial. Gut 71:716–723. https://doi.org/10.1136/GUTJNL-2020-323617

    Article  CAS  Google Scholar 

  176. Fan L, Ren J, Chen Y et al (2022) Effect of fecal microbiota transplantation on primary hypertension and the underlying mechanism of gut microbiome restoration: protocol of a randomized, blinded, placebo-controlled study. Trials 23:178. https://doi.org/10.1186/S13063-022-06086-2

    Article  Google Scholar 

  177. Napolitano M, Covasa M (2020) Microbiota transplant in the treatment of obesity and diabetes: current and future perspectives. Front Microbiol 11:590370

    Article  Google Scholar 

Download references

Legalislation Issues

Data/Results/Biomarkers/Other approaches recommended as a Preliminary Protocols for the Prevention and Predictive Personalised Patients treatment and Relevance to the Existent Medical Protocols (Country, National, etc.)

No declare.

Founding

No declare.

Other Acknowledgments

No declare.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tkach, S., Dorofeyev, A., Kuzenko, I., Boyko, N., Falalyeyeva, T., Kobyliak, N. (2023). Fecal Microbiota Transplantation in Diseases Not Associated with Clostridium difficile: Current Status and Future Therapeutic Option. In: Boyko, N., Golubnitschaja, O. (eds) Microbiome in 3P Medicine Strategies. Advances in Predictive, Preventive and Personalised Medicine, vol 16. Springer, Cham. https://doi.org/10.1007/978-3-031-19564-8_10

Download citation

Publish with us

Policies and ethics