Skip to main content

II-VI Quantum Dots and Their Surface Functionalization

  • Chapter
  • First Online:
Handbook of II-VI Semiconductor-Based Sensors and Radiation Detectors

Abstract

Semiconductor quantum dots are superlattices consisting of few to several thousand atoms. The unique optical and electronic properties of these structures can be effectively utilized in applications such as biolabeling, sensing, and therapeutic purposes. Colloidally stable quantum dots are typically prepared in organic solvents, and therefore subsequent transfer to aqueous medium is required for biological applications. This can be achieved by various ways including ligand exchange, ligand modification, surface coating, and encapsulation methods. The phase transfer may also be ensued by the surface functionalization of these colloidally stable dots by linking various molecules to the surface. Different techniques can be used to purify the modified quantum dots. Careful selection of reaction parameters, such as linker to nanoparticle ratio, may also help in obtaining discrete number of biomolecules linked to the surface. Finally, surface functionalized dots can be used for more intricate problems such as analyte sensing, DNA labeling, protein encoding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aldana J, Wang YA, Peng X (2001) Photochemical instability of CdSe nanocrystals coated by hydrophilic thiols. J Am Chem Soc 123:8844–8850. https://doi.org/10.1021/ja016424q

    Article  Google Scholar 

  2. Ali Z, Abbasi A, Zhang F, Arosio P, Lascialfari A, Casula MF et al (2011) Multifunctional nanoparticles for dual imaging. Anal Chem 83(8):2877–2882

    Article  Google Scholar 

  3. Alivisatos AP (1996) Perspectives on the physical chemistry of semiconductor nanocrystals. J Phys Chem A 100:226–239. https://doi.org/10.1021/jp9535506

    Article  Google Scholar 

  4. Alivisatos AP (1997) Nanocrystals: building blocks for modern materials design. Endeavour 21:56–60

    Article  Google Scholar 

  5. Amin F, Yushchenko DA, Montenegro JM, Parak WJ (2012) Integration of organic fluorophores in the surface of polymer-coated colloidal nanoparticles for sensing the local polarity of the environment. Chem Phys Chem 13(4):1030–1035

    Article  Google Scholar 

  6. Astrid F, Beloglazova N, Rajkovic A, Sas B, Madder A, Goryacheva IY, De Saeger S, S. (2016) Bioconjugation of quantum dots: review and impact on future application. Trac-Trends Anal Chem 83:31–48

    Article  Google Scholar 

  7. Bakalova R, Ohba H, Zhelev Z, Nagase T, Jose R, Ishikawa M et al (2004) Quantum dot anti-CD conjugates: are they potential photosensitizers or potentiators of classical photosensitizing agents in photodynamic therapy of cancer? Nano Lett 4(9):1567–1573

    Article  ADS  Google Scholar 

  8. Banerjee A, Grazon C, Nadal B, Pons T, Krishnan Y, Dubertret B (2015) Fast, efficient and stable conjugation of multiple DNA strands on colloidal quantum dots. Bioconjug Chem 26:1582–1589

    Article  Google Scholar 

  9. Banerjee A, Pons T, Lequeux N, Dubertret B (2016) Quantum dots–DNA bioconjugates: synthesis to applications. Interface Focus 6(6):0064

    Article  Google Scholar 

  10. Bansal AK, Antolini F, Zhang S, Stroea L, Ortolani L, Lanzi M et al (2016) Highly luminescent colloidal CdS quantum dots with efficient near-infrared electroluminescence in light-emitting diodes. J Phys Chem C 120(3):1871–1880

    Article  Google Scholar 

  11. Bawendi MG, Steigerwald ML, Brus LE (1990) The quantum mechanics of larger semiconductor clusters (" quantum dots"). Ann Rev Phys Chem 41(1):477–496

    Article  ADS  Google Scholar 

  12. Bear JC, Hollingsworth N, McNaughter PD, Mayes AG, Ward MB, Nann T et al (2014) Copper-doped CdSe/ZnS quantum dots: controllable photoactivated copper (I) cation storage and release vectors for catalysis. Angew Chem Intern Ed 53(6):1598–1601

    Article  Google Scholar 

  13. Brkić S (2017) Biocompatibility of Cadmium-selenide quantum dots. Eur Intern J Sci Technol 6(4):6–17

    Google Scholar 

  14. Bruchez Jr.M., Moronne M., Gin P., Weiss S., Alivisatos A.P. (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281(5385):2013–2016

    Article  ADS  Google Scholar 

  15. Brus L (1986) Electronic wave functions in semiconductor clusters: experiment and theory. J Phys Chem 90(12):2555–2560

    Article  Google Scholar 

  16. Bullen C, Mulvaney P (2006) The effects of chemisorption on the luminescence of CdSe quantum dots. Langmuir 22:3007–3013. https://doi.org/10.1021/la051898e

    Article  Google Scholar 

  17. Chan WC, Nie S (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281(5385):2016–2018

    Article  ADS  Google Scholar 

  18. Chen S, Li Y, Wu S, Jiang X, Yang H, Su X et al (2020) A phosphorescent probe for cephalexin consisting of mesoporous thioglycolic acid-modified Mn: ZnS quantum dots coated with a molecularly imprinted polymer. Microchim Acta 187(1):1–10

    Article  Google Scholar 

  19. Clarke SJ, Hollmann CA, Zhang Z, Suffern D, Bradforth SE, Dimitrijevic N et al (2006) Photophysics of dopamine-modified quantum dots and effects on biological systems. Nat Mater 5:409–417. https://doi.org/10.1038/nmat1631

    Article  ADS  Google Scholar 

  20. Conde J, Dias JT, Grazú V, Moros M, Baptista PV, de la Fuente JM (2014) Revisiting 30 years of biofunctionalization and surface chemistry of inorganic nanoparticles for nanomedicine. Frontiers Chem 2:48

    Article  ADS  Google Scholar 

  21. Correa-Duarte MA, Giersig M, Liz-Marzan LM (1998) Stabilization of CdS semiconductor nanoparticles against photodegradation by a silica coating procedure. Chem Phys Lett 286(5–6):497–501

    Article  ADS  Google Scholar 

  22. Dabbousi BO, Rodriguez-Viejo J, Mikulec FV, Heine JR, Mattoussi H, Ober R et al (1997) (CdSe) ZnS core− shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. J Phys Chem B 101(46):9463–9475

    Article  Google Scholar 

  23. Daou TJ, Li L, Reiss P, Josserand V, Texier I (2009) Effect of poly (ethylene glycol) length on the in vivo behavior of coated quantum dots. Langmuir 25(5):3040–3044

    Article  Google Scholar 

  24. Darbandi M, Thomann R, Nann T (2005) Single quantum dots in silica spheres by microemulsion synthesis. Chem Mater 17(23):5720–5725

    Article  Google Scholar 

  25. Derfus AM, Chan WC, Bhatia SN (2004) Probing the cytotoxicity of semiconductor quantum dots. Nano Lett 4(1):11–18

    Article  ADS  Google Scholar 

  26. Derfus AM, Chen AA, Min D, Ruoslahti E, Bhatia SN (2007) Targeted quantum dot conjugates for siRNA delivery. Bioconjug Chem 18:1391–1396

    Article  Google Scholar 

  27. Döllefeld H, Hoppe K, Kolny J, Schilling K, Weller H, Eychmüller A (2002) Investigations on the stability of thiol stabilized semiconductor nanoparticles. Phys Chem Chem Phys 4:4747–4753. https://doi.org/10.1039/b202101c

    Article  Google Scholar 

  28. Dubois F, Mahler B, Dubertret B, Doris E, Mioskowski C (2007) A versatile strategy for quantum dot ligand exchange. J Am Chem Soc 129(3):482–483

    Article  Google Scholar 

  29. Ekimov AI, Onushchenko AA (1981) Quantum size effect in three-dimensional microscopic semiconductor crystals. ZhETF Pisma Redaktsiiu 34:363. (in Russian)

    ADS  Google Scholar 

  30. Ekimov AI, Onushchenko AA (1984) Size quantization of the electron energy spectrum in semiconductor microcrystals. JETP Lett 40:1136–1139

    ADS  Google Scholar 

  31. Eychmüller A, Mews A, Weller H (1993) A quantum dot quantum well: CdS/HgS/CdS. Chem Phys Lett 208(1–2):59–62

    Article  ADS  Google Scholar 

  32. Farlow J, Seo D, Broaders KE, Taylor MJ, Gartner ZJ, Jun Y-W (2013) Formation of targeted monovalent quantum dots by steric exclusion. Nat Methods 10(12):1203–1205

    Article  Google Scholar 

  33. Fernandez-Argüelles MT, Yakovlev A, Sperling RA, Luccardini C, Gaillard S, Sanz MA et al (2007) Synthesis and characterization of polymer-coated quantum dots with integrated acceptor dyes as FRET-based nanoprobes. Nano Lett 7(9):2613–2617

    Article  ADS  Google Scholar 

  34. Fritz G., Schadler V., Willenbacher N., Wagner N.J. (2002) Electrosteric stabilization of colloidal dispersions. Langmuir 18, 6381–6390. (doi:10.1021/la015734j).

    Google Scholar 

  35. Gerion D, Pinaud F, Williams SC, Parak WJ, Zanchet D, Weiss S, Alivisatos AP (2001) Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dot. J Phys Chem B 105:8861–8871

    Article  Google Scholar 

  36. Grandhi GK, Viswanatha R (2016) Understanding the role of surface capping ligands in passivating the quantum dots using copper dopants as internal sensor. J Phys Chem C 120(35):19785–19795

    Article  Google Scholar 

  37. Guerrero-Martínez A, Pérez-Juste J, Liz-Marzán LM (2010) Recent progress on silica coating of nanoparticles and related nanomaterials. Adv Mater 22(11):1182–1195

    Article  Google Scholar 

  38. Guo L, Yang S, Yang C, Yu P, Wang J, Ge W et al (2000) Highly monodisperse polymer-capped ZnO nanoparticles: preparation and optical properties. Appl Phys Lett 76(20):2901–2903

    Article  ADS  Google Scholar 

  39. Hermanson GT (2013) Bioconjugate Techniques. Academic, Cambridge, USA

    Google Scholar 

  40. Heuer-Jungemann A, Feliu N, Bakaimi I, Hamaly M, Alkilany A, Chakraborty I et al (2019) The role of ligands in the chemical synthesis and applications of inorganic nanoparticles. Chem Rev 119(8):4819–4880

    Article  Google Scholar 

  41. Howarth M, Ting AY (2008) Imaging proteins in live mammalian cells with biotin ligase and monovalent streptavidin. Nat Protoc 3(3):534–545

    Article  Google Scholar 

  42. Ipe BI, Lehnig M, Niemeyer CM (2005) On the generation of free radical species from quantum dots. Small 1(7):706–709

    Article  Google Scholar 

  43. Jasim KE (2015) Quantum dots solar cells. In: Kosyachenko LA (ed) Solar cells – new approaches and reviews. Intech, pp 303–331

    Google Scholar 

  44. Ji X, Copenhaver D, Sichmeller C, Peng X (2008) Ligand bonding and dynamics on colloidal nanocrystals at room temperature: the case of alkylamines on CdSe nanocrystals. J Am Chem Soc 130:5726–5735. https://doi.org/10.1021/ja710909f

    Article  Google Scholar 

  45. Jiang W, Mardyani S, Fischer H, Chan WC (2006) Design and characterization of lysine cross-linked mercapto-acid biocompatible quantum dots. Chem Mater 18(4):872–878

    Article  Google Scholar 

  46. Kairdolf BA, Smith AM, Nie S (2008a) One-pot synthesis, encapsulation, and solubilization of size-tuned quantum dots with amphiphilic multidentate ligands. J Am Chem Soc 130(39):12866–12867

    Article  Google Scholar 

  47. Kairdolf BA, Mancini MC, Smith AM, Nie S (2008b) Minimizing nonspecific cellular binding of quantum dots with hydroxyl-derivatized surface coatings. Anal Chem 80(8):3029–3034

    Article  Google Scholar 

  48. Kaiser U, Jimenez de Aberasturi D, Malinowski R, Amin F, Parak W, Heimbrodt W (2014) Multiplexed measurements by time resolved spectroscopy using colloidal CdSe/ZnS quantum dots. Appl Phys Lett 104(4):041901

    Article  ADS  Google Scholar 

  49. Kaiser U, Sabir N, Carrillo-Carrion C, Del Pino P, Bossi M, Heimbrodt W et al (2015) Förster resonance energy transfer mediated enhancement of the fluorescence lifetime of organic fluorophores to the millisecond range by coupling to Mn-doped CdS/ZnS quantum dots. Nanotechnology 27(5):055101

    Article  ADS  Google Scholar 

  50. Kanagasubbulakshmi S, Gowtham I, Kadirvelu K, Archana K (2019) Biocompatible methionine-capped CdS/ZnS quantum dots for live cell nucleus imaging. MRS Commun 9:344–351

    Article  Google Scholar 

  51. Khanna PK, Dhanabalan K, More P, Viswanathan S, Renugopalakrishnan V (2012) Biocompatible hydrophilic CdSe quantum dots: Single-Step synthesis. Intern J Green Nanotechnol 4(1):62–70

    Article  Google Scholar 

  52. Kippeny T, Swafford LA, Rosenthal SJ (2002) Semiconductor nanocrystals: a powerful visual aid for introducing the particle in a box. J Chem Educ 79(9):1094

    Article  Google Scholar 

  53. Kirchner C, Liedl T, Kudera S, Pellegrino T, Muñoz JA, Gaub HE et al (2005) Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano Lett 5(2):331–338

    Article  ADS  Google Scholar 

  54. Kortan A, Hull R, Opila RL, Bawendi MG, Steigerwald ML, Carroll P et al (1990) Nucleation and growth of CdSe on ZnS quantum crystallite seeds, and vice versa, in inverse micelle media. J Am Chem Soc 112(4):1327–1332

    Article  Google Scholar 

  55. Kuçur E, Ziegler J, Nann T (2008) Synthesis and spectroscopic characterization of fluorescent blue-emitting ultrastable CdSe clusters. Small 4(7):883–887

    Article  Google Scholar 

  56. Kudera S, Zanella M, Giannini C, Rizzo A, Li Y, Gigli G et al (2007) Sequential growth of magic-size CdSe nanocrystals. Adv Mater 19(4):548–552

    Article  Google Scholar 

  57. Kuhn SJ, Finch SK, Hallahan DE, Giorgio TD (2007) Facile production of multivalent enzyme-nanoparticle conjugates. J Magnetism Magnetic Mater 311(1):68–72

    Article  ADS  Google Scholar 

  58. Kumari A, Sharma A, Malairaman U, Singh RR (2018) Proficient surface modification of CdSe quantum dots for highly luminescent and biocompatible probes for bioimaging: A comparative experimental investigation. J Lumin 199:174–182

    Article  Google Scholar 

  59. Lala N, Lalbegi SP, Adyanthaya SD, Sastry M (2001) Phase transfer of aqueous gold colloidal particles capped with inclusion complexes of cyclodextrin and alkanethiol molecules into chloroform. Langmuir 17:3766–3768. https://doi.org/10.1021/la0015765

    Article  Google Scholar 

  60. Lin CAJ, Sperling RA, Li JK, Yang TY, Li PY, Zanella M et al (2008) Design of an amphiphilic polymer for nanoparticle coating and functionalization. Small 4(3):334–341

    Article  Google Scholar 

  61. Linkov P, Krivenkov V, Nabiev I, Samokhvalov P (2016) High quantum yield CdSe/ZnS/CdS/ZnS multishell quantum dots for biosensing and optoelectronic applications. Mater Today: Proc 3(2):104–108

    Google Scholar 

  62. Liu J, Alvarez J, Ong W, Román E, Kaifer AE (2001) Phase transfer of hydrophilic, cyclodextrin-modified gold nanoparticles to chloroform solutions. J Am Chem Soc 123:11148–11154. https://doi.org/10.1021/ja003957a

    Article  Google Scholar 

  63. Liu M, Wang Y-Y, Liu Y, Jiang F-L (2020) Thermodynamic implications of the ligand exchange with alkylamines on the surface of CdSe quantum dots: the importance of ligand–ligand interactions. J Phys Chem C 124(8):4613–4625

    Article  Google Scholar 

  64. Lovrić J, Cho SJ, Winnik FM, Maysinger D (2005) Unmodified cadmium telluride quantum dots induce reactive oxygen species formation leading to multiple organelle damage and cell death. Chem Biol 12(11):1227–1234

    Article  Google Scholar 

  65. Luccardini C, Tribet C, Vial F, Marchi-Artzner V, Dahan M (2006) Size, charge, and interactions with giant lipid vesicles of quantum dots coated with an amphiphilic macromolecule. Langmuir 22(5):2304–2310

    Article  Google Scholar 

  66. Ma W, Qin L-X, Liu F-T, Gu Z, Wang J, Zhi Gang Pan ZG et al (2013) Ubiquinone-quantum dot bioconjugates for in vitro and intracellular complex I sensing. Sci Rep 3:1537

    Article  Google Scholar 

  67. Mansur AP, Mansur HS, de Carvalho SM, Lobato ZI, Guedes M, Leite MF (2016) Surface biofunctionalized CdS and ZnS quantum dot nanoconjugates for nanomedicine and oncology: to be or not to be nanotoxic? Intern J Nanomed 11:4669–4690

    Article  Google Scholar 

  68. Mayya KS, Caruso F (2003) Phase transfer of surface-modified gold nanoparticles by hydrophobization with alkylamines. Langmuir 19:6987–6993. https://doi.org/10.1021/la034018+

    Article  Google Scholar 

  69. Mazumder S, Dey R, Mitra MK, Mukherjee S, Das GC (2009) Review: biofunctionalized quantum dots in biology and medicine. J. Nanomaterials 2009:815734

    Article  Google Scholar 

  70. McMahon JM, Emory SR (2007) Phase transfer of large gold nanoparticles to organic solvents with increased stability. Langmuir 23:1414–1418. https://doi.org/10.1021/la0617560

    Article  Google Scholar 

  71. Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nature Mater 4:435–446

    Article  ADS  Google Scholar 

  72. Miyawaki A, Sawano A, Kogure T (2003) Lighting up cells: labelling proteins with fluorophores. Nat Cell Biol Suppl:S1–S7

    Google Scholar 

  73. Montaseri H, Abrahamse H, Forbes PBC (2021) Fluorescence sensing with molecularly imprinted polymer-capped quantum dots. In: Martín-Esteban A (ed) Molecularly imprinted polymers. Methods in molecular biology, vol 2359. Humana, New York, pp 183–194

    Chapter  Google Scholar 

  74. Moreels I, Martins JC, Hens Z (2006) Ligand adsorption/desorption on sterically stabilized InP colloidal nanocrystals: observation and thermodynamic analysis. Chem Phys Chem 7(5):1028–1031

    Article  Google Scholar 

  75. Mulder WJ, Koole R, Brandwijk RJ, Storm G, Chin PT, Strijkers GJ et al (2006) Quantum dots with a paramagnetic coating as a bimodal molecular imaging probe. Nano Lett 6(1):1–6

    Article  ADS  Google Scholar 

  76. Murray C, Norris DJ, Bawendi MG (1993a) Synthesis and characterization of nearly monodisperse CdE (E=sulfur, selenium, tellurium) semiconductor nanocrystallites. J Am Chem Soc 115(19):8706–8715

    Article  Google Scholar 

  77. Murray C, Nirmal M, Norris DJ, Bawendi M (1993b) Synthesis and structural characterization of II–VI semiconductor nanocrystallites (quantum dots). Zeitschrift für Physik D Atoms, Molecules Clusters 26(1):231–233

    Article  ADS  Google Scholar 

  78. Nagy A, Hollingsworth JA, Hu B, Steinbrück A, Stark PC, Rios VC et al (2013) Functionalization-dependent induction of cellular survival pathways by CdSe quantum dots in primary normal human bronchial epithelial cells. ACS Nano 7(10):8397–8411

    Article  Google Scholar 

  79. Nann T, Mulvaney P (2004) Single quantum dots in spherical silica particles. Angew Chem Intern Ed 43(40):5393–5396

    Article  Google Scholar 

  80. Nirmal M, Murray C, Bawendi M (1994) Fluorescence-line narrowing in CdSe quantum dots: surface localization of the photogenerated exciton. Phys Rev B 50(4):2293

    Article  ADS  Google Scholar 

  81. Norris DJ, Sacra A, Murray C, Bawendi M (1994) Measurement of the size dependent hole spectrum in CdSe quantum dots. Phys Rev Lett 72(16):2612

    Article  ADS  Google Scholar 

  82. Parak WJ, Pellegrino T, Plank C (2005) Labelling of cells with quantum dots. Nanotechnology 16:R9–R25

    Article  ADS  Google Scholar 

  83. Pereira G, Monteiro CAP, Albuquerque GM, Pereira MIA, Cabrera MP, Cabral Filho PE (2019) (Bio)conjugation strategies applied to fluorescent semiconductor quantum dots. J Braz Chem Soc 30(12):2536–2560

    Google Scholar 

  84. Perez-Donoso JM, Monras JP, Bravo D, Aquirre A, Quest AF, Osorio-Roman IO et al (2012) Biomimetic, mild chemical synthesis of CdTe-GSH quantum dots with improved biocompatibility. PLoS One 7(1):e30741

    Article  ADS  Google Scholar 

  85. Petruska MA, Bartko AP, Klimov VI (2004) An amphiphilic approach to nanocrystal quantum dot− titania nanocomposites. J Am Chem Soc 126(3):714–715

    Article  Google Scholar 

  86. Pfeiffer C, Rehbock C, Hühn D, Carrillo-Carrion C, de Aberasturi DJ, Merk V et al (2014) Interaction of colloidal nanoparticles with their local environment: the (ionic) nanoenvironment around nanoparticles is different from bulk and determines the physico-chemical properties of the nanoparticles. J Royal Soc Interface 11(96):20130931

    Article  Google Scholar 

  87. Pong B-K, Trout BL, Lee J-Y (2008) Modified ligand-exchange for efficient solubilization of CdSe/ZnS quantum dots in water: a procedure guided by computational studies. Langmuir 24(10):5270–5276

    Article  Google Scholar 

  88. Pons T, Uyeda HT, Medintz IL, Mattoussi H (2006) Hydrodynamic dimensions, electrophoretic mobility, and stability of hydrophilic quantum dots. J Phys Chem B 110(41):20308–20316

    Article  Google Scholar 

  89. Potapova I, Mruk R, Prehl S, Zentel R, Basché T, Mews A (2003) Semiconductor nanocrystals with multifunctional polymer ligands. J Am Chem Soc 125(2):320–321

    Article  Google Scholar 

  90. Potapova I, Mruk R, Hübner C, Zentel R, Basché T, Mews A (2005) CdSe/ZnS nanocrystals with dye-functionalized polymer ligands containing many anchor groups. Angew Chem Intern Ed 44(16):2437–2440

    Article  Google Scholar 

  91. Rajh T, Micic OI, Nozik AJ (1993) Synthesis and characterization of surface-modified colloidal cadmium telluride quantum dots. J Phys Chem 97(46):11999–12003

    Article  Google Scholar 

  92. Reiss P, Protiere M, Li L (2009) Core/shell semiconductor nanocrystals. Small 5(2):154–168

    Article  Google Scholar 

  93. Ren X, Chen L (2015) Quantum dots coated with molecularly imprinted polymer as fluorescence probe for detection of cyphenothrin. Biosens Bioelectron 64:182–188

    Article  Google Scholar 

  94. Rogach A, Harrison M, Kershaw S, Kornowski A, Burt M, Eychmüller A et al (2001) Colloidally prepared CdHgTe and HgTe quantum dots with strong near-infrared luminescence. Phys Status Solidi (b) 224(1):153–158

    Article  ADS  Google Scholar 

  95. Sakura T, Takahashi T, Kataoka K, Nagasaki Y (2005) One-pot preparation of monodispersed and physiologically stabilized gold colloid. Colloid Polym Sci 284:97–101. https://doi.org/10.1007/s00396-005-1339-9

    Article  Google Scholar 

  96. Sapsford KE, Pons T, Medintz IL, Mattoussi H (2006) Biosensing with luminescent semiconductor quantum dots. Sensors 6(8):925–953

    Article  ADS  Google Scholar 

  97. Shen L (2011) Biocompatible polymer/quantum dots hybrid materials: current status and future developments. J Funct Biomater 2:355–372

    Article  Google Scholar 

  98. Shen L, Laibinis PE, Hatton TA (1999) Bilayer surfactant stabilized magnetic fluids: synthesis and interactions at interfaces. Langmuir 15:447–453. https://doi.org/10.1021/la9807661

    Article  Google Scholar 

  99. Smith AM, Nie S (2008) Minimizing the hydrodynamic size of quantum dots with multifunctional multidentate polymer ligands. J Am Chem Soc 130(34):11278–11279

    Article  Google Scholar 

  100. Smith AM, Duan H, Rhyner MN, Ruan G, Nie S (2006) A systematic examination of surface coatings on the optical and chemical properties of semiconductor quantum dots. Phys Chem Chem Phys 8:3895–3903. https://doi.org/10.1039/b606572b

    Article  Google Scholar 

  101. Sperling RA, Parak WJ (2010) Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. Phil Trans R Soc A 368:1333–1383

    Article  ADS  Google Scholar 

  102. Sperling RA, Pellegrino T, Li JK, Chang WH, Parak WJ (2006) Electrophoretic separation of nanoparticles with a discrete number of functional groups. Adv Functional Mater 16(7):943–948

    Article  Google Scholar 

  103. Sperling R, Liedl T, Duhr S, Kudera S, Zanella M, Lin C-A et al (2007) Size determination of (bio) conjugated water-soluble colloidal nanoparticles: a comparison of different techniques. J Phys Che C 111(31):11552–11559

    Article  Google Scholar 

  104. Srinivasan C, Lee J, Papadimitrakopoulos F, Silbart LK, Zhao M, Burgess DJ (2006) Labeling and intracellular tracking of functionally active plasmid DNA with semiconductor quantum dots. Mol Ther 14(2):192–201

    Article  Google Scholar 

  105. Su Y, He Y, Lu H, Sai L, Li Q, Li W et al (2009) The cytotoxicity of cadmium based, aqueous phase–synthesized, quantum dots and its modulation by surface coating. Biomaterials 30(1):19–25

    Article  Google Scholar 

  106. Tan L, Wan A, Li H, Zhang H, Lu Q (2012) Biocompatible quantum dots–chitosan nanocomposites for fluorescence detection of nitric oxide. Mater Chem Phys 134(2–3):562–566

    Article  Google Scholar 

  107. Van Vlerken LE, Vyas TK, Amiji MM (2007) Poly (ethylene glycol)-modified nanocarriers for tumor-targeted and intracellular delivery. Pharm Res 24(8):1405–1414

    Article  Google Scholar 

  108. Wang Y, Wong JF, Teng X, Lin XZ, Yang H (2003) Pulling nanoparticles into water: phase transfer of oleic acid stabilized monodisperse nanoparticles into aqueous solutions of a-cyclodextrin. Nano 3:1555–1559. https://doi.org/10.1021/nl034731j

    Article  ADS  Google Scholar 

  109. Wang M, Dykstra TE, Lou X, Salvador MR, Scholes GD, Winnik MA (2006) Colloidal CdSe nanocrystals passivated by a dye-labeled multidentate polymer: quantitative analysis by size-exclusion chromatography. Angew Chem Intern Ed 45(14):2221–2224

    Article  Google Scholar 

  110. Wang X, Ding H, Yu X, Shi X, Sun A, Li D et al (2019) Characterization and application of molecularly imprinted polymer-coated quantum dots for sensitive fluorescent determination of diethylstilbestrol in water samples. Talanta 197:98–104

    Article  Google Scholar 

  111. Watson KJ, Zhu J, Nguyen ST, Mirkin CA (1999) Hybrid nanoparticles with block copolymer shell structures. J Am Chem Soc 121(2):462–463

    Article  Google Scholar 

  112. Wilchek M, Bayer EA (1988) The avidin–biotin complex in bioanalytical applications. Anal Biochem 171:1–32. https://doi.org/10.1016/0003-2697(88)90120-0

    Article  Google Scholar 

  113. Wooding A, Kilner M, Lambrick DB (1991) Studies of the double surfactant layer stabilization of water-based magnetic fluids. J Colloid Interf Sci 144:236–242. https://doi.org/10.1016/0021-9797(91)90254-6

    Article  ADS  Google Scholar 

  114. Wu X, Liu H, Liu J, Haley KN, Treadway JA, Larson JP et al (2003) Immunofluorescent labeling of cancer marker Her 2 and other cellular targets with semiconductor quantum dots. Nature Biotechnol 21(1):41–46

    Article  Google Scholar 

  115. Wuister SF, Swart I, van Driel F, Hickey SG, de Donega CM (2003) Highly luminescent water-soluble CdTe quantum dots. Nano 3:503–507. https://doi.org/10.1021/nl034054t

    Article  ADS  Google Scholar 

  116. Xie H, Yu W (2012) A review on nanofluids: preparation, stability mechanisms and applications. J Nanomater 2012:435873. https://doi.org/10.1155/2012/435873

    Article  Google Scholar 

  117. Yang Y, Chen O, Angerhofer A, Cao YC (2006) Radial-position-controlled doping in CdS/ZnS core/shell nanocrystals. J Am Chem Soc 128(38):12428–12429

    Article  Google Scholar 

  118. Yang Y, Chen O, Angerhofer A, Cao YC (2008) On doping CdS/ZnS core/shell nanocrystals with Mn. J Am Chem Soc 130(46):15649–15661

    Article  Google Scholar 

  119. Yang Y, Chang Y, Guo Y, Yu L, Zhang G, Zhai D et al (2019) Fluorometric microplate-based dimethoate assay using CdSe/ZnS quantum dots coated with a molecularly imprinted polymer. Microchim Acta 186(8):1–10

    Article  ADS  Google Scholar 

  120. Yezhelyev MV, Qi L, O’Regan RM, Nie S, Gao X (2008) Proton-sponge coated quantum dots for siRNA delivery and intracellular imaging. J Am Chem Soc 130(28):9006–9012

    Article  Google Scholar 

  121. Yildiz I, McCaughan B, Cruickshank SF, Callan JF, Raymo FM (2009) Biocompatible CdSe−ZnS core−shell quantum dots coated with hydrophilic polythiols. Langmuir 25(12):7090–7096

    Article  Google Scholar 

  122. Yu X, Lei DY, Amin F, Hartmann R, Acuna GP, Guerrero-Martínez A et al (2013) Distance control in-between plasmonic nanoparticles via biological and polymeric spacers. Nano Today 8(5):480–493

    Article  Google Scholar 

  123. Zanella M, Abbasi AZ, Schaper AK, Parak WJ (2010) Discontinuous growth of II−VI semiconductor nanocrystals from different materials. J Phys Chem C 114(14):6205–6215

    Article  Google Scholar 

  124. Zhang Y, Clapp A (2011) Overview of stabilizing ligands for biocompatible quantum dot nanocrystals. Sensors 11(12):11036–11055

    Article  ADS  Google Scholar 

  125. Zheng Y, Yang Z, Li Y, Ying JY (2008) From glutathione capping to a crosslinked, phytochelatin-like coating of quantum dots. Adv Mater 20(18):3410–3415

    Article  Google Scholar 

  126. Zheng L, Zheng Y, Liu Y, Long S, Du L, Liang J et al (2019) Core-shell quantum dots coated with molecularly imprinted polymer for selective photoluminescence sensing of perfluorooctanoic acid. Talanta 194:1–6

    Google Scholar 

  127. Zubarev ER, Xu J, Sayyad A, Gibson JD (2006) Amphiphilic gold nanoparticles with V-shaped arms. J Am Chem Soc 128(15):4958–4959

    Google Scholar 

Download references

Acknowledgments

G.K. is grateful to the State Program of the Republic of Moldova, project 20.80009.5007.02, for supporting his research. F. A. is grateful to Higher Education Commission, Pakistan, HEC-NRPU grant # 10653 for supporting his research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faheem Amin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Amin, F., Ali, Z., Korotcenkov, G. (2023). II-VI Quantum Dots and Their Surface Functionalization. In: Korotcenkov, G. (eds) Handbook of II-VI Semiconductor-Based Sensors and Radiation Detectors. Springer, Cham. https://doi.org/10.1007/978-3-031-19531-0_14

Download citation

Publish with us

Policies and ethics