Skip to main content

Accurate Contact-Free Material Recognition with Millimeter Wave and Machine Learning

  • Conference paper
  • First Online:
Wireless Algorithms, Systems, and Applications (WASA 2022)

Abstract

Material recognition plays an essential role in areas including industry automation, medical applications, and smart homes. However, existing material recognition systems suffer from low accuracy, inconvenience (e.g., deliberate measuring procedures), or high cost (e.g., specialized instruments required). To tackle the above limitations, we propose a contact-free material recognition system using a millimetre wave (mmWave) radar. Our approach identifies materials such as metal, wood, and ceramic tile, according to their different electromagnetic and surface properties. Specifically, we leverage the following techniques to improve the system robustness and accuracy: (1) spatial information enhancement by exploiting multiple receiver antennas; (2) channel augmentation by applying Frequency Modulated Continuous Wave (FMCW) modulation; and (3) high classification accuracy enabled by Artificial Intelligence (AI) technology. We evaluate our system by applying it to classify five common materials. The experimental results are promising, with 98% classification accuracy, which shows the effectiveness of our mmWave-based material recognition system.

This work is supported by the National Key Research and Development Program of China (No. 2021YFB3100400), the Shandong Science Fund for Excellent Young Scholars (No. 2022HWYQ-038), the Guangxi Natural Science Foundation (No. 2020GXNSFBA159042).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adib, F.M., Kabelac, Z., Katabi, D.: Multi-person localization via RF body reflections. In: Proceedings of the 12th USENIX Conference on Networked Systems Design and Implementation (NSDI), pp. 279–292 (2015)

    Google Scholar 

  2. Barowski, J., Zimmermanns, M., Rolfes, I.: Millimeter-wave characterization of dielectric materials using calibrated FMCW transceivers. IEEE Trans. Microw. Theory Tech. 66(8), 3683–3689 (2018)

    Article  Google Scholar 

  3. Cesetti, M., Nicolosi, P.: Waste processing: new near infrared technologies for material identification and selection. J. Instrum. 11(9), C09002–C09002 (2016)

    Article  Google Scholar 

  4. Dhekne, A., Gowda, M.K., Zhao, Y., Hassanieh, H., Choudhury, R.R.: LiquID: a wireless liquid identifier. In: Proceedings of the 16th Annual International Conference on Mobile Systems, Applications, and Services (MobiSys), pp. 442–454 (2018)

    Google Scholar 

  5. Ding, H., et al.: A platform for free-weight exercise monitoring with passive tags. IEEE Trans. Mob. Comput. 16(12), 3279–3293 (2017)

    Article  Google Scholar 

  6. Feng, C., et al.: WiMi: target material identification with commodity Wi-Fi devices. In: 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS), pp. 700–710 (2019)

    Google Scholar 

  7. Harrison, C., Hudson, S.E.: Lightweight material detection for placement-aware mobile computing. In: Proceedings of the 21st Annual ACM Symposium on User Interface Software and Technology (UIST), pp. 279–282 (2008)

    Google Scholar 

  8. Heunisch, S., Ohlsson, L., Wernersson, L.E.: Reflection of coherent millimeter-wave wavelets on dispersive materials: a study on porcine skin. IEEE Trans. Microw. Theory Tech. 66(4), 2047–2054 (2018)

    Article  Google Scholar 

  9. Holloway, C.L., Perini, P.L., Delyser, R.R., Allen, K.C.: Analysis of composite walls and their effects on short-path propagation modeling. IEEE Trans. Veh. Technol. 46(3), 730–738 (2002)

    Article  Google Scholar 

  10. Huang, Y., Chen, K., Wang, L., Dong, Y., Huang, Q., Wu, K.: Lili: liquor quality monitoring based on light signals. In: Proceedings of ACM MobiCom, pp. 256–268 (2021)

    Google Scholar 

  11. Iqbal, F., et al.: Alcohol sensing and classification using PCF-based sensor. Sens. Bio-sens. Res. 30, 100384 (2020)

    Article  Google Scholar 

  12. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv Learning (2014)

    Google Scholar 

  13. Koike-Akino, T., Wang, P., Pajovic, M., Sun, H., Orlik, P.V.: Fingerprinting-based indoor localization with commercial MMWave WiFi: a deep learning approach. IEEE Access 8, 84879–84892 (2020)

    Article  Google Scholar 

  14. Lin, S.K.: Microwave and millimeter-wave remote sensing for security applications. By Jeffrey A. Nanzer, Artech House, 2012; 372 pages. Remote. Sens. 5, 367–373 (2013)

    Google Scholar 

  15. Lu, C.X., et al.: See through smoke: robust indoor mapping with low-cost MMWave radar. In: Proceedings of the 18th International Conference on Mobile Systems, Applications, and Services (MobiSys), pp. 14–27 (2020)

    Google Scholar 

  16. Manley, M.: Near-infrared spectroscopy and hyperspectral imaging: non-destructive analysis of biological materials. Chem. Soc. Rev. 43(24), 8200–8214 (2014)

    Article  Google Scholar 

  17. das Neves Franco, L.A.P., Sinatora, A.: 3D surface parameters (ISO 25178-2): actual meaning of Spk and its relationship to Vmp. Precis. Eng. 40, 106–111 (2015)

    Google Scholar 

  18. Rahman, T., Adams, A.T., Schein, P., Jain, A., Erickson, D., Choudhury, T.: Nutrilyzer: a mobile system for characterizing liquid food with photoacoustic effect. In: Proceedings of ACM SenSys, pp. 123–136 (2016)

    Google Scholar 

  19. Sagala, T.B.V., Suryana, J.: Implementation of mechanical scanning and signal processing for FMCW radar. In: 2016 International Symposium on Electronics and Smart Devices (ISESD), pp. 46–50 (2016)

    Google Scholar 

  20. Saponaro, P., Sorensen, S., Kolagunda, A., Kambhamettu, C.: Material classification with thermal imagery. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4649–4656 (2015)

    Google Scholar 

  21. Smidt, E., Schwanninger, M., Tintner, J., Böhm, K.: Ageing and deterioration of materials in the environment - application of multivariate data analysis. In: Multivariate Analysis in Management, Engineering and the Sciences (2013)

    Google Scholar 

  22. Stathakis, D.: How many hidden layers and nodes? Int. J. Remote Sens. 30, 2133–2147 (2009)

    Article  Google Scholar 

  23. Vakili, I., Ohlsson, L., Wernersson, L.E., Gustafsson, M.G.: Time-domain system for millimeter-wave material characterization. IEEE Trans. Microw. Theory Tech. 63(9), 2915–2922 (2015)

    Article  Google Scholar 

  24. Wang, J., Xiong, J., Chen, X., Jiang, H., Balan, R.K., Fang, D.: TagScan: simultaneous target imaging and material identification with commodity RFID devices. In: Proceedings of the 23rd Annual International Conference on Mobile Computing and Networking (MobiCom), pp. 288–300 (2017)

    Google Scholar 

  25. Wu, T., Lin, C.J., Weng, R.C.H.: Probability estimates for multi-class classification by pairwise coupling. J. Mach. Learn. Res. 5, 975–1005 (2003)

    MathSciNet  MATH  Google Scholar 

  26. Yang, Z., et al.: On the feasibility of estimating soluble sugar content using millimeter-wave. In: Proceedings of ACM/IEEE IoTDI, pp. 13–24 (2019)

    Google Scholar 

  27. Yanik, M.E., Torlak, M.: Near-field MIMO-SAR millimeter-wave imaging with sparsely sampled aperture data. IEEE Access 7, 31801–31819 (2019)

    Article  Google Scholar 

  28. Yeo, H.S., Flamich, G., Schrempf, P., Harris-Birtill, D., Quigley, A.J.: Radarcat: radar categorization for input interaction. In: Proceedings of the 29th Annual Symposium on User Interface Software and Technology (UIST), pp. 833–841 (2016)

    Google Scholar 

  29. Zhang, R., Cao, S.: Extending reliability of mmWave radar tracking and detection via fusion with camera. IEEE Access 7, 137065–137079 (2019)

    Article  Google Scholar 

  30. Zhao, M., et al.: RF-based 3D skeletons. In: Proceedings of the 2018 Conference of the ACM Special Interest Group on Data Communication (SIGCOMM), pp. 267–281 (2018)

    Google Scholar 

  31. Zhu, Y., Zhu, Y., Zhao, B.Y., Zheng, H.: Reusing 60ghz radios for mobile radar imaging. In: Proceedings of the 21st Annual International Conference on Mobile Computing and Networking (MobiCom), pp. 103–116 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengfei Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

He, S. et al. (2022). Accurate Contact-Free Material Recognition with Millimeter Wave and Machine Learning. In: Wang, L., Segal, M., Chen, J., Qiu, T. (eds) Wireless Algorithms, Systems, and Applications. WASA 2022. Lecture Notes in Computer Science, vol 13472. Springer, Cham. https://doi.org/10.1007/978-3-031-19214-2_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19214-2_51

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19213-5

  • Online ISBN: 978-3-031-19214-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics