Skip to main content

A School Goes to Altitude

  • Chapter
  • First Online:
Exercise, Respiratory and Environmental Physiology

Abstract

This chapter concerns the contribution of the School of Milano to the study of human responses to altitude exposure. Paolo Cerretelli’s contributions are firstly described. The studies performed during the expedition to Mount Kanjut-Sar, Karakorum, in 1957, and during the Italian Expedition to Mount Everest in 1973 are reported. This expedition generated a highly celebrated article, on the factors limiting oxygen transport on Mount Everest. The subsequent remarkable work on structural and functional muscle adaptation to altitude, performed along the Cerretelli–Hoppeler (Bern) axis is described. Then, Reinhold Messner attained the summit of Mount Everest without supplementary oxygen. Several projects devoted to understand Messner’s achievement (AMREE, by John West; the Messner’s study, set up by Oswald Oelz with Hoppeler and Cerretelli; Operation Everest II) are analyzed. Finally, Cerretelli’s work at the new Italian laboratory close to the Everest basecamp (the Pyramid) is reported. Secondly, the studies coordinated by Giuseppe Miserocchi concerning the complex interaction between lung diffusion, alveolar-capillary blood volume, and lung water balance to affect the kinetics of alveolar-capillary equilibration on increasing oxygen demand is developed. Further, inter-individual differences in the proneness to develop pulmonary edema at altitude are related to specific morpho-functional features of the alveolar-capillary network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 189.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    In fact, Kellas estimated lower PAO2, and thus higher PACO2 and lower SaO2 than actually measured on top during the American Medical Research Expedition to Mount Everest almost 70 years later (West et al. 1983b).

References

  • American Thoracic Society (1995) Single-breath carbon monoxide diffusing capacity (transfer factor) recommendations for a standard technique–1995 update. Am J Respir Crit Care Med 152:2185–2198

    Article  Google Scholar 

  • Andersson U, Tracey KJ (2011) HMGB1 is a therapeutic target for sterile inflammation and infection. Annu Rev Immunol 29:139–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andersson U, Ottestad W, Tracey KJ (2020) Extracellular HMGB1: a therapeutic target in severe pulmonary inflammation including COVID-19? Mol Med 26:42

    Article  PubMed  PubMed Central  Google Scholar 

  • Asmussen E, von Dobeln W, Nielsen M (1948) Blood lactate and oxygen debt after exhaustive work at different oxygen tensions. Acta Physiol Scand 15:57–62

    Article  CAS  PubMed  Google Scholar 

  • Åstrand PO (1952) Experimental studies of physical working capacity in relation to sex and age. Munksgaard, Kopenhagen

    Google Scholar 

  • Åstrand PO, Christensen EH (1964) Aerobic work capacity. In: Dickens F, Neil E, Widdas WF (eds) Oxygen in the animal organism. Pergamon Press, New York, pp 295–303

    Chapter  Google Scholar 

  • Bannister RG, Cunningham DJC (1954) The effects on respiration and performance during exercise of adding oxygen to the inspired air. J Physiol Lond 125:118–137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartesaghi M, Beretta E, Pollastri L, Scotti V, Mandolesi G, Lanfranconi F, Miserocchi G (2014) Inter-individual differences in control of alveolar capillary blood volume in exercise and hypoxia. Respir Physiol Neurobiol 190:96–104

    Article  PubMed  Google Scholar 

  • Bender PR, Groves BM, McCullough RE, McCullough RG, Trad L, Young AJ, Cymerman A, Reeves JT (1989) Decreased exercise muscle lactate release after high altitude acclimatization. J Appl Physiol 67:1456–1462

    Article  CAS  PubMed  Google Scholar 

  • Beretta E, Lanfranconi F, Grasso GS, Bartesaghi M, Alemayehu HK, Miserocchi G (2017a) Reappraisal of DLCO adjustment to interpret the adaptive response of the air-blood barrier to hypoxia. Respir Physiol Neurobiol 238:59–65

    Article  PubMed  Google Scholar 

  • Beretta E, Lanfranconi F, Grasso GS, Bartesaghi M, Alemayehu HK, Pratali L, Catuzzo B, Giardini G, Miserocchi G (2017b) Air blood barrier phenotype correlates with alveolo-capillary O2 equilibration in hypobaric hypoxia. Respir Physiol Neurobiol 246:53–58

    Article  PubMed  Google Scholar 

  • Beretta E, Grasso GS, Forcaia G, Sancini G, Miserocchi G (2019) Differences in alveolo-capillary equilibration in healthy subjects on facing O2 demand. Sci Rep 9:16693

    Article  PubMed  PubMed Central  Google Scholar 

  • Beretta EB, Romanò F, Sancini GA, Grotberg JB, Nieman GF, Miserocchi G (2021) Pulmonary interstitial matrix and lung fluid balance from normal to the acutely injured lung. Front Physiol 12. https://doi.org/10.3389/fphys.2021.781874

  • Berger MM, Hesse C, Dehnert C, Siedler H, Kleinbongard P, Bardenheuer HJ, Kelm M, Bärtsch P, Haefeli WE (2005) Hypoxia impairs systemic endothelial function in individuals prone to high-altitude pulmonary edema. Am J Respir Crit Care Med 172:763–767

    Article  PubMed  Google Scholar 

  • Bert P (1878) La pression barométrique, recherches de physiologie expérimentale. Masson, Paris

    Book  Google Scholar 

  • Bloch KE, Buenzli JC, Latshang TD, Ulrich S (2015) Sleep at high altitude: guesses and facts. J Appl Physiol 119:1466–1480

    Article  CAS  PubMed  Google Scholar 

  • Blomqvist CG, Saltin B (1983) Cardiovascular adaptations to physical training. Annu Rev Physiol 45:169–189

    Article  CAS  PubMed  Google Scholar 

  • Brooks GA, Wolfel EE, Groves BM, Bender PR, Butterfield GE, Cymerman A, Mazzeo R, Sutton JR (1992) Muscle accounts for glucose disposal but not blood lactate appearance during exercise after acclimatization to 4,300 m. J Appl Physiol 72:2435–2445

    Article  CAS  PubMed  Google Scholar 

  • Brooks GA, Wolfel EE, Butterfield GE, Cymerman A, Roberts AC, Mazzeo R, Reeves JT (1998) Poor relation between arterial [lactate] and leg net release during exercise at 4,300 m altitude. Am J Phys 275:R1192–R1201

    CAS  Google Scholar 

  • Busch T, Bärtsch P, Pappert D, Grünig E, Hildebrandt W, Elser H, Falke KJ, Swenson ER (2001) Hypoxia decreases exhaled nitric oxide in mountaineers susceptible to high-altitude pulmonary edema. Am J Respir Crit Care Med 163:368–373

    Article  CAS  PubMed  Google Scholar 

  • Cerretelli P (1959) Esistenza di una permanente stimolazione ipossica del centro respiratorio in individui acclimatati a quote di 5000-7500 m. s.l.m. (Himalaya) Atti Congr Int Med Aeron Spaziale:1–8

    Google Scholar 

  • Cerretelli P (1961) Some aspects of the respiratory function in man acclimatized to high altitude (the Himalayas). Int Z Angew Physiol 18:386–392

    CAS  PubMed  Google Scholar 

  • Cerretelli P (1967) Lactacid O2 debt in chronic and acute hypoxia. In: Margaria R (ed) Exercise at Altitude. Excerpta Medica, Amsterdam, pp 58–64

    Google Scholar 

  • Cerretelli P (1976a) Limiting factors to oxygen transport on Mount Everest. J Appl Physiol 40:658–667

    Article  CAS  PubMed  Google Scholar 

  • Cerretelli P (1976b) Metabolismo ossidativo ed anaerobico nel soggetto acclimatato all’altitudine. Minerva Aerospaziale 8:11–26

    Google Scholar 

  • Cerretelli P (1982) O2 breathing at altitude : effects on maximal performance. In: Brendel W, Zinc RA (eds) High altitude physiology and medicine. Springer, Berlin, pp 9–15

    Chapter  Google Scholar 

  • Cerretelli P (2013) Career perspective: Paolo Cerretelli. Extreme Physiol Med 2:13

    Article  Google Scholar 

  • Cerretelli P, Gelfi C (2011) Energy metabolism in hypoxia: reinterpreting some features of muscle physiology on molecular grounds. Eur J Appl Physiol 111:421–432

    Article  CAS  PubMed  Google Scholar 

  • Cerretelli P, Hoppeler H (1996) Morphologic and metabolic response to chronic hypoxia. In: Fregly MJ, Blatteis CM (eds) Handbook of physiology. Environmental physiology. Oxford University Press, New York, sect. 4, vol II, pp 1155–1181

    Google Scholar 

  • Cerretelli P, Margaria R (1961) Maximum oxygen consumption at altitude. Int Z Angew Physiol 18:460–464

    CAS  PubMed  Google Scholar 

  • Cerretelli P, Samaja M (2003) Acid-base balance at exercise in normoxia and in chronic hypoxia. Revisiting the “lactate paradox”. Eur J Appl Physiol 90:431–448

    Article  CAS  PubMed  Google Scholar 

  • Cerretelli P, Cruz JC, Farhi LE, Rahn H (1966) Determination of mixed venous O2 and CO2 tensions and cardiac output by a rebreathing method. Respir Physiol 1:258–264

    Article  CAS  PubMed  Google Scholar 

  • Cerretelli P, Bordoni U, Debijadji R, Saracino F (1967) Respiratory and circulatory factors affecting the maximal aerobic power in hypoxia. Arch Fisiol 65:344–357

    CAS  PubMed  Google Scholar 

  • Cerretelli P, Veicsteinas A, Marconi C (1982) Anaerobic metabolism at high altitude : the lactacid mechanism. In: Brendel W, Zinc RA (eds) High altitude physiology and medicine. Springer, Berlin, pp 94–102

    Chapter  Google Scholar 

  • Cerretelli P, Marconi C, Dériaz O, Giezendanner D (1984) After effects of chronic hypoxia on cardiac output and muscle blood flow at rest and exercise. Eur J Appl Physiol 53:92–96

    Article  CAS  Google Scholar 

  • Cerretelli P, Marzorati M, Marconi C (2009) Muscle bioenergetics and metabolic control at altitude. High Alt Med Biol 10:165–174

    Article  CAS  PubMed  Google Scholar 

  • Cogo A, Ponchia A, Pecchio O, Losano G, Cerretelli P (2000) Italian high altitude laboratories: past and present. High Alt Med Biol 1:137–147

    Article  CAS  PubMed  Google Scholar 

  • Cope DK, Parker JC, Taylor MD, Houston M, Taylor AE (1989) Pulmonary capillary pressures during hypoxia and hypoxemia: experimental and clinical studies. Crit Care Med 17:853–857

    Article  CAS  PubMed  Google Scholar 

  • Cope DK, Grimbert F, Downey JM, Taylor AE (1992) Pulmonary capillary pressure: a review. Crit Care Med 20:1043–1056

    Article  CAS  PubMed  Google Scholar 

  • Costill DL, Fink WJ, Pollock ML (1976) Muscle fiber composition and enzyme activities of elite distance runners. Med Sci Sports 8:96–100

    CAS  PubMed  Google Scholar 

  • Cotes JE, Dabbs JM, Elwood PC, Hall AM, McDonald A, Saunders MJ (1972) Iron-deficiency anaemia: its effect on transfer factor for the lung (diffusion capacity) and ventilation and cardiac frequency during sub-maximal exercise. Clin Sci 42:325–335

    Article  CAS  PubMed  Google Scholar 

  • Cymerman A, Reeves JT, Sutton JR, Rock PB, Groves BM, Malconian MK, Young PM, Wagner PD, Houston CS (1989) Operation Everest II: maximal oxygen uptake at extreme altitude. J Appl Physiol 66:2446–2453

    Article  CAS  PubMed  Google Scholar 

  • Dehler M, Zessin E, Bärtsch P, Mairbäurl H (2006) Hypoxia causes permeability edema in the constant-pressure perfused rat lung. Eur Respir J 27:600–606

    Article  CAS  PubMed  Google Scholar 

  • Dejours P, Girard F, Labrousse Y, Teillac A (1959) Etude de la régulation de la ventilation de repos chez l’homme en haute altitude. Rev Franc Etud Clin Biol 4:115–127

    CAS  PubMed  Google Scholar 

  • Dellacà RL, Zannin E, Sancini G, Rivolta I, Leone BE, Pedotti A, Miserocchi G (2008) Changes in the mechanical properties of the respiratory system during the development of interstitial lung edema. Respir Res 9:51

    Article  PubMed  PubMed Central  Google Scholar 

  • Dempsey JA, Wagner PD (1999) Exercise – induced arterial hypoxemia. J Appl Physiol 87:1997–2006

    Article  CAS  PubMed  Google Scholar 

  • Dempsey JA, Hanson PG, Henderson KS (1984) Exercise-induced arterial hypoxaemia in healthy human subjects at sea level. J Physiol Lond 355:161–175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desplanches D, Hoppeler H, Tüscher L, Mayet MH, Spielvogel H, Ferretti G, Kayser B, Leuenberger M, Grünefelder A, Favier R (1996) Muscle tissue adaptations of high altitude natives to training in chronic hypoxia or acute normoxia. J Appl Physiol 81:1946–1951

    Article  CAS  PubMed  Google Scholar 

  • di Prampero PE (1985) Metabolic and circulatory limitations to VO2max at the whole animal level. J Exp Biol 115:319–331

    Article  PubMed  Google Scholar 

  • di Prampero PE, Ferretti G (1990) Factors limiting maximal oxygen consumption in humans. Respir Physiol 80:113–128

    Article  PubMed  Google Scholar 

  • di Prampero PE, Atchou G, Brueckner J-C, Moia C (1986) The energetics of endurance running. Eur J Appl Physiol 55:259–266

    Article  Google Scholar 

  • Dill DB, Adams WC (1971) Maximal oxygen uptake at sea level and at 3,090 m altitude in high school champion runners. J Appl Physiol 30:854–859

    Article  CAS  PubMed  Google Scholar 

  • Dill DB, Edwards HT, Folling A, Oberg SA, Pappenheimer AM, Talbot JH (1931) Adaptations of the organism to changes in oxygen pressure. J Physiol Lond 71:47–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dill DB, Myhre LG, Phillips EE, Brown DK (1966) Work capacity in acute exposures to altitude. J Appl Physiol 21:1168–1176

    Article  CAS  PubMed  Google Scholar 

  • Duplain H, Sartori C, Lepori M, Egli M, Allemann Y, Nicod P, Scherrer U (2000) Exhaled nitric oxide in high-altitude pulmonary edema: role in the regulation of pulmonary vascular tone and evidence for a role against inflammation. Am J Respir Crit Care Med 162:221–224

    Article  CAS  PubMed  Google Scholar 

  • Eckardt KU, Boutellier U, Kurtz A, Schopen M, Koller EA, Bauer C (1989) Rate of erythropoietin formation in humans in response to acute hypobaric hypoxia. J Appl Physiol 66:1785–1788

    Article  CAS  PubMed  Google Scholar 

  • Edwards HT (1936) Lactic acid in rest and work at high altitude. Am J Phys 116:367–375

    Article  CAS  Google Scholar 

  • Ekblom B (1969) The effect of physical training on oxygen transport system in man. Acta Physiol Scand Suppl 328:1–45

    Google Scholar 

  • Ekblom B, Goldbarg AN, Gullbring B (1972) Response to exercise after blood loss and reinfusion. J Appl Physiol 33:175–180

    Article  CAS  PubMed  Google Scholar 

  • Ekblom B, Wilson G, Åstrand PO (1976) Central circulation during exercise after venesection and reinfusion of red blood cells. J Appl Physiol 40:379–383

    Article  CAS  PubMed  Google Scholar 

  • Eldridge MV, Podolsky A, Richardson RS, Johnson DH, Knight DR, Johnson EC, Hopkins SR, Michimata H, Grassi B, Feiner J, Kurdak SS, Bickler PE, Wagner PD, Severinghaus JW (1996) Pulmonary hemodynamic response to exercise in subjects with prior high-altitude pulmonary edema. J Appl Physiol 81:911–921

    Article  CAS  PubMed  Google Scholar 

  • Fagraeus L, Karlsson J, Linnarsson D, Saltin B (1973) Oxygen uptake during maximal work at lowered and raised ambient air pressures. Acta Physiol Scand 87:411–421

    Article  CAS  PubMed  Google Scholar 

  • Fenn WO, Rahn H, Otis AB (1946) A theoretical study of the composition of the alveolar air at altitude. Am J Phys 146:637–653

    Article  Google Scholar 

  • Ferretti G (2003) Limiting factors to oxygen transport on Mount Everest 30 years after: a critique of Paolo Cerretelli’s contribution to the study of altitude physiology. Eur J Appl Physiol 90:344–350

    Article  CAS  PubMed  Google Scholar 

  • Ferretti G (2014) Maximal oxygen consumption in healthy humans: theories and facts. Eur J Appl Physiol 114:2007–2036

    Article  CAS  PubMed  Google Scholar 

  • Ferretti G, di Prampero PE (1995) Factors limiting maximal O2 consumption : effects of acute changes in ventilation. Respir Physiol 99:259–271

    Article  CAS  PubMed  Google Scholar 

  • Ferretti G, Moia C, Thomet JM, Kayser B (1997) The decrease of maximal oxygen consumption during hypoxia in man : a mirror image of the oxygen equilibrium curve. J Physiol Lond 498:231–237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferretti G, Fagoni N, Taboni A, Vinetti G, di Prampero PE (2022) A century of exercise physiology: key concepts on coupling respiratory oxygen flow to muscle energy demand during exercise. Eur J Appl Physiol 122:1317

    Article  PubMed  PubMed Central  Google Scholar 

  • Feyerabend P (1975) Against method. Verso, London

    Google Scholar 

  • FitzGerald MP (1913) The changes in the breathing and the blood at various high altitudes. Philos Trans R Soc Lond 203:351–371

    Google Scholar 

  • Frey TM, Crapo RO, Jensen RL, Kanner RE, Kass JE, Castriotta RJ, Mohsenifar Z (1990) Adjustment of DLCO for varying COHb, and alveolar PO2 using a theoretical adjustment equation. Respir Physiol 81:303–311

    Article  CAS  PubMed  Google Scholar 

  • Gale GE, Torre-Bueno JR, Moon RE, Saltzman HA, Wagner PD (1985) Ventilation-perfusion inequality in normal humans during exercise at sea level and simulated altitude. J Appl Physiol 58:978–988

    Article  CAS  PubMed  Google Scholar 

  • Ganter CC, Jakob SM, Takala J (2006) Pulmonary capillary pressure. A review. Minerva Anestesiol 72:21–36

    CAS  PubMed  Google Scholar 

  • Gelfi C, De Palma S, Ripamonti M, Eberini I, Wait R, Bajracharya A, Marconi C, Schneider A, Hoppeler H, Cerretelli P (2004) New aspects of altitude adaptation in Tibetans: a proteomic approach. FASEB J 18:612–614

    Article  CAS  PubMed  Google Scholar 

  • Glazier JB, Hughes JM, Maloney JE, West JB (1969) Measurements of capillary dimensions and blood volume in rapidly frozen lungs. J Appl Physiol 26:65–76

    Article  CAS  PubMed  Google Scholar 

  • Gold AJ, Johnson TF, Costello LC (1973) Effects of altitude stress on mitochondrial function. Am J Phys 224:946–949

    Article  CAS  Google Scholar 

  • Goldman MD, Saadeh C, Ross D (2005) Clinical applications of forced oscillation to assess peripheral airway function. Respir Physiol Neurobiol 148:179–194

    Article  PubMed  Google Scholar 

  • Grassi B, Ferretti G, Kayser B, Marzorati M, Colombini A, Marconi C, Cerretelli P (1995) Maximal rate of blood lactate accumulation during exercise at high altitude in humans. J Appl Physiol 79:331–339

    Article  CAS  PubMed  Google Scholar 

  • Grassi B, Marzorati M, Kayser B, Bordini M, Colombini A, Conti M, Marconi C, Cerretelli P (1996) Peak blood lactate and blood lactate vs. workload during acclimatization to 5050 m and in the deacclimatization. J Appl Physiol 80:685–692

    Article  CAS  PubMed  Google Scholar 

  • Grassi B, Mognoni P, Marzorati M, Mattiotti S, Marconi C, Cerretelli P (2001) Power and peak blood lactate at 5050 m with 10 and 30 s “all out” cycling. Acta Physiol Scand 172:189–194

    Article  CAS  PubMed  Google Scholar 

  • Green HJ, Sutton JR, Cymerman A, Young PM, Houston CS (1989) Operation Everest II: adaptations in human skeletal muscle. J Appl Physiol 66:2454–2461

    Article  CAS  PubMed  Google Scholar 

  • Grocott MP, Martin DS, Levett DZ, McMorrow R, Windsor J, Montgomery HE (2009) Arterial blood gases and oxygen content in climbers on Mount Everest. New Engl J Med 360:140–149

    Article  CAS  PubMed  Google Scholar 

  • Hansen JM, Olsen NV, Feldt-Rasmussen B, Kanstrup IL, Déchaux M, Dubray C, Richalet JP (1994) Albuminuria and overall capillary permeability of albumin in acute altitude hypoxia. J Appl Physiol 76:1922–1927

    Article  CAS  PubMed  Google Scholar 

  • Harrop GA (1919) The oxygen and carbon dioxide content of arterial and of venous blood in normal individuals and in patients with anemia and heart disease. J Exp Med 30:241–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hochachka PW (1988) The lactate paradox : analysis of the underlying mechanisms. Ann Sports Med 4:184–188

    Google Scholar 

  • Hochachka PW, Stanley C, Merkt J, Sumar-Kalinowski J (1983) Metabolic meaning of elevated levels of oxidative enzymes in high altitude adapted animals: an interpretive hypothesis. Respir Physiol 52:303–313

    Article  CAS  PubMed  Google Scholar 

  • Hochachka PW, Beatty CL, Burelle Y, Trump ME, McKenzie DC, Matheson GO (2002) The lactate paradox in human high altitude physiological performance. News Physiol Sci 17:122–126

    CAS  PubMed  Google Scholar 

  • Hodges AN, Sheel AW, Mayo JR, McKenzie DC (2007) Human lung density is not altered following normoxic and hypoxic moderate-intensity exercise: implications for transient edema. J Appl Physiol 103:111–118

    Article  PubMed  Google Scholar 

  • Holmgren A, Åstrand PO (1966) DL and the dimensions and functional capacities of the O2 transport system in humans. J Appl Physiol 21:1463–1470

    Article  CAS  PubMed  Google Scholar 

  • Hopkins SR, Levin DL (2006) Heterogeneous pulmonary blood flow in response to hypoxia: a risk factor for high altitude pulmonary edema? Respir Physiol Neurobiol 151:217–228

    Article  PubMed  Google Scholar 

  • Hopkins SR, McKenzie DC, Schoene RB, Glenny W, Robertson HT (1994) Pulmonary gas exchange during exercise in athletes. I. Ventilation—perfusion mismatch and diffusion limitation. J Appl Physiol 77:912–917

    Article  CAS  PubMed  Google Scholar 

  • Hoppeler H, Lüthi P, Claassen E, Weibel ER, Howald H (1973) The ultrastructure of the normal human skeletal muscle. A morphometric analysis of untrained men, women, and well-trained orienteers. Pflügers Arch 334:217–232

    Article  Google Scholar 

  • Hoppeler H, Kleinert E, Schlegel C, Claassen H, Howald H, Cerretelli P (1990) Muscular exercise at high altitude. II. Morphological adaptation of skeletal muscle to chronic hypoxia. Int J Sports Med 11(Suppl 1):S3–S9

    Article  PubMed  Google Scholar 

  • Houston CS, Sutton JR, Cymerman A, Reeves JT (1987) Operation Everest II: man at extreme altitude. J Appl Physiol 63:877–882

    Article  CAS  PubMed  Google Scholar 

  • Howald H (1982) Training-induced morphological and functional changes in skeletal muscle. Int J Sports Med 3:1–12

    Article  CAS  PubMed  Google Scholar 

  • Howald H, Pette D, Simoneau JA, Uber A, Hoppeler H, Cerretelli P (1990) Muscular exercise at high altitude. III. Effects of chronic hypoxia on muscle enzyme activity. Int J Sports Med 11(Suppl 1):S10–S14

    Article  PubMed  Google Scholar 

  • Hughes JM, Pride NB (2001) In defence of the carbon monoxide transfer coefficient Kco (TL/VA). Eur Respir J 17:168–174

    Article  CAS  PubMed  Google Scholar 

  • Jelkmann W (2003) Erythropoietin. J Endocrinol Investig 26:832–837

    Article  CAS  Google Scholar 

  • Juel C, Lundby C, Sander M, Calbet JAL, van Hall G (2003) Human skeletal muscle and erythrocyte proteins involved in acid-base homeostasis: adaptations to chronic hypoxia. J Physiol Lond 548:639–648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang H, Cancel LM, Tarbell JM (2014) Effect of shear stress on water and LDL transport through cultured endothelial cell monolayers. Atherosclerosis 233:682–690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanner RE, Crapo RO (1986) The relationship between alveolar oxygen tension and the single-breath carbon monoxide diffusing capacity. Am Rev Respir Dis 133:676–678

    CAS  PubMed  Google Scholar 

  • Kayser B, Hoppeler H, Claassen H, Cerretelli P (1991) Muscle structure and performance capacity of Himalayan Sherpas. J Appl Physiol 70:1938–1942

    Article  CAS  PubMed  Google Scholar 

  • Kayser B, Ferretti G, Grassi B, Binzoni T, Cerretelli P (1993) Maximal lactic capacity at high altitude. Effect of bicarbonate loading. J Appl Physiol 75:1070–1074

    Article  CAS  PubMed  Google Scholar 

  • Kayser B, Hoppeler H, Desplanches D, Broers B, Marconi C, Cerretelli P (1996) Muscle ultrastructure and biochemistry of lowland Tibetans. J Appl Physiol 81:419–425

    Article  CAS  PubMed  Google Scholar 

  • Kellas AM (1917) A consideration of the possibility of ascending the loftier Himalaya. Geogr J 49(26–47):1917

    Google Scholar 

  • Kellas AM (2001) A consideration of the possibility of ascending Mount Everest. High Altitude Med Biol 2:431–461

    Article  CAS  Google Scholar 

  • Kolliputi N, Shaik NS, Waxman AB (2010) The inflammasome mediates hyperoxia-induced alveolar cell permeability. J Immunol 184:5819–5826

    Article  CAS  PubMed  Google Scholar 

  • Koyama S, Hildebrandt J (1991) Air interface and elastic recoil affect vascular resistance in three zones of rabbit lungs. J Appl Physiol 70:2422–2431

    Article  CAS  PubMed  Google Scholar 

  • Lacour JR, Flandrois R (1977) Le rôle du métabolisme aérobie dans l’exercice intense de longue durée. J Physiol Paris 73:89–130

    CAS  PubMed  Google Scholar 

  • Lakshminarayanan S, Gardner TW, Tarbell JM (2000) Effect of shear stress on the hydraulic conductivity of cultured bovine retinal microvascular endothelial cell monolayers. Curr Eye Res 21:944–951

    Article  CAS  PubMed  Google Scholar 

  • Lanfranconi F, Pollastri L, Corna G, Bartesaghi M, Novarina M, Ferri A, Miserocchi GA (2017) The elusive path of brain tissue oxygenation and cerebral perfusion in harness hang syncope in mountain climbers. High Alt Med Biol 18:363–371

    Article  CAS  PubMed  Google Scholar 

  • Lanfranconi F, Ferri A, Pollastri L, Bartesaghi M, Novarina M, De Vito G, Beretta E, Tremolizzo L (2019) Impact of hanging motionless in harness on respiratory and blood pressure reflex modulation in mountain climbers. High Alt Med Biol 20:122–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee FS, Percy MJ (2011) The HIF pathway and erythrocytosis. Annu Rev Pathol 6:165–192

    Article  CAS  PubMed  Google Scholar 

  • Luks AM, Swenson ER, Bärtsch P (2017) Acute high-altitude sickness. Eur Respir Rev 26:160096

    Article  PubMed  PubMed Central  Google Scholar 

  • Luks AM, Ainslie PN, Lawley JS, Roach RC, Simonson TS (2021) Ward Milledge and West’s high altitude physiology and medicine. CRC Press, Boca Raton

    Book  Google Scholar 

  • Lundby C, Robach P (2016) Does ‘altitude training’ increase exercise performance in elite athletes? Exp Physiol 101:783–788

    Article  PubMed  Google Scholar 

  • Lundby C, Saltin B, van Hall G (2000) The “lactate paradox”, evidence for a transient change in the course of acclimatization to severe hypoxia in lowlanders. Acta Physiol Scand 170:265–269

    Article  CAS  PubMed  Google Scholar 

  • MacIntyre N, Crapo RO, Viegi G, Johnson DC, van der Grinten CPM, Brusasco V, Burgos F, Casaburi R, Coates A, Enright P, Gustafsson P, Hankinson J, Jensen R, McKay R, Miller MR, Navajas D, Pedersen OF, Pellegrino R, Wanger J (2005) Standardization of the single breath determination of carbon monoxide uptake. Eur Respir J 26:720–735

    Article  CAS  PubMed  Google Scholar 

  • Maggiorini M, Mélot C, Pierre S, Pfeiffer F, Greve I, Sartori C, Lepori M, Hauser M, Scherrer U, Naeije R (2001) High-altitude pulmonary edema is initially caused by an increase in capillary pressure. Circulation 103:2078–2083

    Article  CAS  PubMed  Google Scholar 

  • Malconian MK, Rock PB, Reeves JT, Cymerman A, Houston CS (1992) Operation Everest II: gas tensions in expired air and arterial blood at extreme altitude. Aviat Space Environ Med 64:37–42

    Google Scholar 

  • Marconi C, Marzorati M, Grassi B, Basnyat B, Colombini A, Kayser B, Cerretelli P (2004) Second generation Tibetan lowlanders acclimatize to high altitude more quickly than Caucasians. J Physiol Lond 556:661–671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marconi C, Marzorati M, Sciuto D, Ferri A, Cerretelli P (2005) Economy of locomotion in high altitude Tibetan migrants exposed to normoxia. J Physiol Lond 569:667–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marconi C, Marzorati M, Cerretelli P (2006) Work capacity of permanent residents of high altitude. High Alt Med Biol 7:105–115

    Article  PubMed  Google Scholar 

  • Margaria R, Galante E, Cerretelli P (1959) An efficient CO2 absorber for experiments on metabolism. J Appl Physiol 14:1066–1068

    Article  CAS  PubMed  Google Scholar 

  • Margaria R, Cerretelli P, Marchi S, Rossi L (1961) Maximum exercise in oxygen. Int Z Angew Physiol 18:465–467

    CAS  PubMed  Google Scholar 

  • Margaria R, Cerretelli P, Mangili F (1964) Balance and kinetics of anaerobic energy release durino strenuous exercise in man. J Appl Physiol 19:623–628

    Article  CAS  PubMed  Google Scholar 

  • Margaria R, Mangili F, Cuttica F, Cerretelli P (1965) The kinetics of the oxygen consumption at the onset of muscular exercise in man. Ergonomics 8:49–54

    Article  Google Scholar 

  • Margaria R, Camporesi E, Aghemo P, Sassi G (1972) The effect of O2 breathing on maximal aerobic power. Pfluegers Arch 336:225–235

    Article  CAS  Google Scholar 

  • Mazzone RW, Durand CM, West JB (1978) Electron microscopy of lung rapidly frozen under controlled physiological conditions. J Appl Physiol 45:325–333

    Article  CAS  PubMed  Google Scholar 

  • Mazzuca E, Aliverti A, Miserocchi G (2016) Computational micro-scale model of control of extravascular water and capillary perfusion in the air blood barrier. J Theor Biol 400:42–51

    Article  PubMed  Google Scholar 

  • Mazzuca E, Aliverti A, Miserocchi G (2019) Understanding vasomotion of lung microcirculation by in vivo imaging. Imaging 5:22

    Article  Google Scholar 

  • McDougall JD, Green HJ, Sutton JR, Coates G, Cymerman A, Young P, Houston CS (1991) Operation Everest II. Structural adaptations in skeletal muscle in response to extreme simulated altitude. Acta Physiol Scand 142:421–427

    Article  Google Scholar 

  • Meyer M, Scheid P, Riepl G, Wagner HJ, Piiper J (1981) Pulmonary diffusion capacities for O2 and CO measured by a rebreathing technique. J Appl Physiol 51:1643–1650

    Article  CAS  PubMed  Google Scholar 

  • Miserocchi G (2008) Mechanisms controlling the volume of pleural fluid and extravascular lung water. Eur Respir Rev 18:244–252

    Article  Google Scholar 

  • Miserocchi G, Negrini D, Del Fabbro M, Venturoli D (1993) Pulmonary interstitial pressure in intact in situ lung: transition to interstitial edema. J Appl Physiol 74:1171–1177

    Article  CAS  PubMed  Google Scholar 

  • Miserocchi G, Passi A, Albertini R, Negrini D, De Luca G (1999) Interstitial pressure and proteoglycan degradation in hydraulic- and elastase-induced lung edema. Chest 116(1 Suppl):31S

    Article  CAS  PubMed  Google Scholar 

  • Miserocchi G, Passi A, Negrini D, Del Fabbro M, De Luca G (2001) Pulmonary interstitial pressure and tissue matrix structure in acute hypoxia. Am J Phys 280:L881–L887

    CAS  Google Scholar 

  • Miserocchi G, Messinesi G, Tana F, Passoni E, Adamo S, Romano R, Beretta E (2008) Mechanisms behind inter-individual differences in lung diffusing capacity. Eur J Appl Physiol 102:561–568

    Article  CAS  PubMed  Google Scholar 

  • Miserocchi G, Beretta E, Rivolta I, Bartesaghi E (2022) Role of the air-blood barrier phenotype in lung oxygen uptakeand control of extravascular water. Front Physiol 13:811129

    Article  PubMed  PubMed Central  Google Scholar 

  • Mitchell JH, Blomqvist CG (1971) Maximal oxygen uptake. New Engl J Med 284:1018–1022

    Article  CAS  PubMed  Google Scholar 

  • Mitzner W, Sylvester JT (1986) Lymph flow and lung weight in isolated sheep lungs. J Appl Physiol 61:1830–1835

    Article  CAS  PubMed  Google Scholar 

  • Monzino G (1976) La spedizione italiana all’Everest. Mondadori, Verona

    Google Scholar 

  • Monzino G, Meciani P, Marimonti L, Bich J, Carrel M, Pelissier C (1960) La spedizione G. M. ‘59 al Kanjut Sar. Rivista Mensile del Club Alpino Italiano 79:3–4

    Google Scholar 

  • Mosso A (1897) La fisiologia dell’uomo sulle Alpi. Treves, Milano

    Google Scholar 

  • Murray AJ, Horscroft JA (2016) Mitochondrial function at extreme high altitude. J Physiol Lond 594:1137–1149

    Article  CAS  PubMed  Google Scholar 

  • Negrini D, Passi A, De Luca G, Miserocchi G (1996) Pulmonary interstitial pressure and proteoglycans during development of pulmonary edema. Am J Phys 270:H2000–H2007

    CAS  Google Scholar 

  • Negrini D, Candiani A, Boschetti F, Crisafulli B, Del Fabbro M, Bettinelli D, Miserocchi G (2001) Pulmonary microvascular and perivascular interstitial geometry during development of mild hydraulic edema. Am J Phys 281:L1464–L1471

    CAS  Google Scholar 

  • Oelz O, Howald H, di Prampero PE, Hoppeler H, Claassen H, Jenni R, Bühlmann A, Ferretti G, Brückner JC, Veicsteinas A, Gussoni M, Cerretelli P (1986) Physiological profile of world class high altitude climbers. J Appl Physiol 60:1734–1742

    Article  CAS  PubMed  Google Scholar 

  • Ouellet Y, Poh SC, Becklake MR (1969) Circulatory factors limiting maximal aerobic exercise capacity. J Appl Physiol 27:874–880

    Article  CAS  PubMed  Google Scholar 

  • Parker JC, Townsley MI (2004) Evaluation of lung injury in rats and mice. Am J Phys 286:L231–L246

    CAS  Google Scholar 

  • Parker RE, Granger DN, Taylor AE (1981) Estimates of isogravimetric capillary pressures during alveolar hypoxia. Am J Phys 241:H732–H739

    CAS  Google Scholar 

  • Passi A, Negrini D, Albertini R, Miserocchi G, De Luca G (1999) The sensitivity of versican from rabbit lung to gelatinase A (MMP-2) and B (MMP-9) and its involvement in the development of hydraulic lung edema. FEBS Lett 456:93–96

    Article  CAS  PubMed  Google Scholar 

  • Piiper J, Scheid P (1981) Model for capillary-alveolar equilibration with special reference to O2 uptake in hypoxia. Respir Physiol 46:193–208

    Article  CAS  PubMed  Google Scholar 

  • Podolsky A, Eldridge MW, Richardson RS, Knight DR, Johnson EC, Hopkins SR, Johnson DH, Michimata H, Grassi B, Feiner J, Kurdak SS, Bickler PE, Severinghaus JW, Wagner PD (1996) Exercise-induced \( {\dot{V}}_A/\dot{Q} \) inequality in subjects with prior high-altitude pulmonary edema. J Appl Physiol 81:922–932

    Google Scholar 

  • Poole DC, Mathieu-Costello O (1989) Skeletal muscle capillary geometry: adaptation to chronic hypoxia. Respir Physiol 77:21–30

    Article  CAS  PubMed  Google Scholar 

  • Pugh LGCE, Gill MB, Lahiri S, Milledge JS, Ward MP, West JB (1964) Muscular exercise at great altitudes. J Appl Physiol 19:431–440

    Article  CAS  PubMed  Google Scholar 

  • Reeves JT, Groves BM, Sutton JR, Wagner PD, Cymerman A, Malconian MK, Rock PB, Young PM, Houston CS (1987) Operation Everest II: preservation of cardiac function at extreme altitude. J Appl Physiol 63:531–539

    Article  CAS  PubMed  Google Scholar 

  • Reeves JT, Groves BM, Cymerman A, Sutton JR, Wagner PD, Turkevich D, Houston CS (1990) Operation Everest II: cardiac filling pressures during cycle exercise at sea level. Respir Physiol 80:147–154

    Article  CAS  PubMed  Google Scholar 

  • Reynafarjee (1962) Myoglobin content and enzymatic activity of muscle and altitude adaptation. J Appl Physiol 17:301–305

    Article  Google Scholar 

  • Rodríguez FA, Ventura JL, Casas M, Casas H, Pagés T, Rama R, Ricart A, Palacios L, Viscor G (2000) Erythropoietin acute reaction and haematological adaptations to short, intermittent hypobaric hypoxia. Eur J Appl Physiol 82:170–177

    Article  PubMed  Google Scholar 

  • Roselli RJ, Parker RE, Harris TR (1984) A model of unsteady-state transvascular fluid and protein transport in the lung. J Appl Physiol 56:1389–1402

    Article  CAS  PubMed  Google Scholar 

  • Roughton F, Forster RE (1957) Relative importance of diffusion and chemical reaction rates in determining rate of exchange of gases in the human lung with special reference to true diffusing capacity of pulmonary membrane and volume of blood in the lung capillaries. J Appl Physiol 11:290–302

    Article  CAS  PubMed  Google Scholar 

  • Rowell LB (1974) Human cardiovascular adjustments to exercise and thermal stress. Physiol Rev 54:75–159

    Article  CAS  PubMed  Google Scholar 

  • Saltin B (1973) Oxygen transport by the circulatory system during exercise in man. In: Keul J (ed) Limiting factors of physical performance. Thieme, Stuttgart, pp 235–252

    Google Scholar 

  • Sapoval B, Filoche M, Weibel ER (2002) Smaller is better–but not too small: a physical scale for the design of the mammalian pulmonary acinus. Proc Natl Acad Sci U S A 99:10411–10416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sartori C, Vollenweider L, Löffler BM, Delabays A, Nicod P, Bärtsch P, Scherrer U (1999) Exaggerated endothelin release in high-altitude pulmonary edema. Circulation 99:2665–2668

    Article  CAS  PubMed  Google Scholar 

  • Saunders PU, Pyne DB, Gore CJ (2009) Endurance training at altitude. High Alt Med Biol 10:135–148

    Article  PubMed  Google Scholar 

  • Schaffartzik W, Poole DC, Derion T, Tsukimoto K, Hogan MC, Arcos JP, Bebout DE, Wagner PD (1992) \( {\dot{V}}_A/\dot{Q} \) distribution during heavy exercise and recovery in humans: implications for pulmonary edema. J Appl Physiol 72:1657–1667

    Google Scholar 

  • Seddon P (2002) Harness suspension: review and evaluation of existing information (2002). Health and Safety Executive (UK). Contract Research Report 451/2002. pp 3–42. www.hse.gov.uk/research/crr_htm//crr02451.ht

  • Semenza GL (2000) HIF-1: mediator of physiological and pathophysiological responses to hypoxia. J Appl Physiol 88:1474–1480

    Article  CAS  PubMed  Google Scholar 

  • Semenza G (2002) Signal transduction to hypoxia-inducible factor 1. Biochem Pharmacol 64:993–998

    Article  CAS  PubMed  Google Scholar 

  • Semenza GL (2020) The genomics and genetics of oxygen homeostasis. Annu Rev Genomics Hum Genet 21:183–204

    Article  CAS  PubMed  Google Scholar 

  • Sill HW, Chang YS, Artman JR, Frangos JA, Hollis TM, Tarbell JM (1995) Shear stress increases hydraulic conductivity of cultured endothelial monolayers. Am J Phys 268:H535–H543

    CAS  Google Scholar 

  • Stellingwerff T, Peeling P, Garvican-Lewis LA, Hall R, Koivisto AE, Heikura IA, Burke LM (2019) Nutrition and altitude: strategies to enhance adaptation, improve performance and maintain health: a narrative review. Sports Med 49(suppl 2):169–184

    Article  PubMed  PubMed Central  Google Scholar 

  • Storz JF (2021) High-altitude adaptation: mechanistic insights from integrated genomics and physiology. Mol Biol Evol 38:2677–2691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sutton JR, Reeves JT, Wagner PD, Groves BM, Cymerman A, Malconian MK, Rock PB, Young PM, Walter SD, Houston CS (1988) Operation Everest II: oxygen transport during exercise at extreme simulated altitude. J Appl Physiol 64:1309–1321

    Article  CAS  PubMed  Google Scholar 

  • Swenson ER, Bärtsch P (2012) High-altitude pulmonary edema. Compr Physiol 2:2753–2773

    Article  PubMed  Google Scholar 

  • Taylor CR, Weibel ER (eds) (1981) Design of the mammalian respiratory system. Respir Physiol 44:1–164

    Google Scholar 

  • van Hall G, Calbet JAL, Sondergaard H, Saltin B (2001) The re-establishment of the normal blood lactate response to exercise in humans after prolonged acclimatization to altitude. J Physiol Lond 536:963–975

    Article  PubMed  PubMed Central  Google Scholar 

  • van Hall G, Lundby C, Araoz M, Calbet JA, Sander M, Saltin B (2009) The lactate paradox revisited in lowlanders during acclimatization to 4100 m and in high-altitude natives. J Physiol Lond 587:1117–1129

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Lieshout JJ, Wieling W, Karemaker JM, Secher NH (2003) Syncope, cerebral perfusion and oxygenation. J Appl Physiol 94:833–848

    Article  PubMed  Google Scholar 

  • Viganò A, Ripamonti M, De Palma S, Capitanio D, Vasso M, Wait R, Lundby C, Cerretelli P, Gelfi C (2008) Proteins modulation in human skeletal muscle in the early phase of adaptation to hypobaric hypoxia. Proteomics 8:4668–4679

    Article  PubMed  Google Scholar 

  • Villafuerte FC (2015) New genetic and physiological factors for excessive erythrocytosis and chronic mountain sickness. J Appl Physiol 119:1481–1486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vogel JA, Hansen JE, Harris CW (1967) Cardiovascular responses in man during exhaustive work at sea level and high altitude. J Appl Physiol 23:531–539

    Article  CAS  PubMed  Google Scholar 

  • Wagner PD (1993) Algebraic analysis of the determinants of VO2max. Respir Physiol 93:221–237

    Article  CAS  PubMed  Google Scholar 

  • Wagner PD, Gale GE, Moon RE, Torre-Bueno JR, Stolp BW, Saltzman HA (1986) Pulmonary gas exchange in humans exercising at sea level and simulated altitude. J Appl Physiol 61:260–270

    Article  CAS  PubMed  Google Scholar 

  • Wagner PD, Sutton JR, Reeves JT, Cymerman A, Groves BM, Malconian MK (1987) Operation Everest II: pulmonary gas exchange during a simulated ascent of Mt. Everest. J Appl Physiol 63:2348–2359

    Article  CAS  PubMed  Google Scholar 

  • Wang GL, Jiang B-H, Rue EA, Semenza GL (1995) Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci 92:5510–5514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ward MP, Milledge JS, West JB (2000) High altitude medicine and physiology. Arnold, London

    Google Scholar 

  • Waxman AB, Kolliputi N (2009) IL-6 protects against hyperoxia-induced mitochondrial damage via Bcl-2-induced Bak interactions with mitofusins. Am J Respir Cell Mol Biol 41:385–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weibel ER (1963) Morphometry of the human lung. Springer, Berlin

    Book  Google Scholar 

  • Weibel ER (1973) Morphological basis of alveolar-capillary gas exchange. Physiol Rev 53:419–495

    Article  CAS  PubMed  Google Scholar 

  • Weibel ER, Gomez DM (1962) Architecture of the human lung. Science 137:577–585

    Article  CAS  PubMed  Google Scholar 

  • West JB (1986) Lactate during exercise at extreme altitude. Fed Proc 45:2953–2957

    CAS  PubMed  Google Scholar 

  • West JB (1987) Alexander M. Kellas and the physiological challenge of Mt. Everest. J Appl Physiol 63:3–11

    Article  CAS  PubMed  Google Scholar 

  • West JB (1988) Rate of ventilatory acclimatization to extreme altitude. Respir Physiol 74:323–333

    Article  CAS  PubMed  Google Scholar 

  • West JB (1998) High life: a history of high altitude physiology and medicine. Springer, New York

    Book  Google Scholar 

  • West JB, Lahiri S (eds) (1984) High altitude and man. Clinical Physiology Series, American Physiological Society

    Google Scholar 

  • West JB, Boyer SJ, Graber DJ, Hackett PH, Maret KH, Milledge JS, Peters RM, Pizzo CJ, Samaja M, Sarnquist FH, Schoene RB, Winslow RM (1983a) Maximal exercise at extreme altitudes on Mount Everest. J Appl Physiol 55:688–702

    Article  CAS  PubMed  Google Scholar 

  • West JB, Hackett PH, Maret KH, Milledge JS, Peters RM, Pizzo CJ, Winslow RM (1983b) Pulmonary gas exchange on the summit of Mount Everest. J Appl Physiol 55:678–687

    Article  CAS  PubMed  Google Scholar 

  • West JB, Lahiri S, Maret KH, Peters RM, Pizzo CJ (1983c) Barometric pressure at extreme altitudes on Mount Everest: physiological significance. J Appl Physiol 54:1188–1194

    Article  CAS  PubMed  Google Scholar 

  • West JB, Tsukimoto K, Mathieu-Costello O, Prediletto R (1991) Stress failure in pulmonary capillaries. J Appl Physiol 70:1731–1742

    Article  CAS  PubMed  Google Scholar 

  • Winslow RM, Samaja M, West JB (1984) Red cell function at extreme altitude on Mount Everest. J Appl Physiol 56:109–116

    Article  CAS  PubMed  Google Scholar 

  • Zuntz N, Löwy A, Müller F, Caspari W (1906) Höhenklima und Bergwanderungen in ihrer Wirkung auf den Menschen. Bong, Berlin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido Ferretti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The American Physiological Society

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ferretti, G., Miserocchi, G. (2023). A School Goes to Altitude. In: Ferretti, G. (eds) Exercise, Respiratory and Environmental Physiology. Perspectives in Physiology. Springer, Cham. https://doi.org/10.1007/978-3-031-19197-8_10

Download citation

Publish with us

Policies and ethics