Skip to main content

Boundary-Aware Polyp Segmentation Network

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13537))

Included in the following conference series:

  • 1537 Accesses

Abstract

Colorectal cancer (CRC) caused by polyps has a high mortality rate worldwide. Accurately segmenting the polyp from colonoscopy images is important for the clinical treatment of CRC. The traditional method of polyp segmentation involves the physician manually marking the location of the polyp, resulting in unreliable segmentation results. The complex structure of polyps, the low contrast with mucosal tissue, and the fact that polyp boundary is usually hidden in the background make the task of polyp segmentation extremely challenging. To address these issues, we propose a boundary-aware polyp segmentation network. Specifically, we first propose an attention-aware location module to accurately identify the primary location of polyp. In order to improve the missing polyp portion in the initial region prediction and to mine the polyp boundary hidden in the background, we propose a residual pyramid convolution. Further, we propose a boundary-guided refinement module for more accurate segmentation in order to use the boundary information provided from residual pyramid convolution for constrained polyp region prediction. Extensive experiments show that our proposed network has advantages over existing state-of-the-art methods on five challenging polyp datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akbari, M., et al.: Polyp segmentation in colonoscopy images using fully convolutional network. In: IEEE EMBC, pp. 69–72. IEEE (2018)

    Google Scholar 

  2. Bernal, J., Sánchez, F.J., Fernández-Esparrach, G., Gil, D., Rodríguez, C., Vilariño, F.: WM-DOVA maps for accurate polyp highlighting in colonoscopy: validation vs. saliency maps from physicians. CMIG 43, 99–111 (2015)

    Google Scholar 

  3. Chen, S., Tan, X., Wang, B., Hu, X.: Reverse attention for salient object detection. In: ECCV, pp. 234–250 (2018)

    Google Scholar 

  4. De Boer, P.T., Kroese, D.P., Mannor, S., Rubinstein, R.Y.: A tutorial on the cross-entropy method. Ann. Oper. Res. 134(1), 19–67 (2005)

    Article  MathSciNet  Google Scholar 

  5. Fan, D.P., Cheng, M.M., Liu, Y., Li, T., Borji, A.: Structure-measure: a new way to evaluate foreground maps. In: IEEE ICCV, pp. 4548–4557 (2017)

    Google Scholar 

  6. Fan, D.P., Gong, C., Cao, Y., Ren, B., Cheng, M.M., Borji, A.: Enhanced-alignment measure for binary foreground map evaluation. arXiv preprint arXiv:1805.10421 (2018)

  7. Fan, D.-P., et al.: PraNet: parallel reverse attention network for polyp segmentation. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12266, pp. 263–273. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59725-2_26

    Chapter  Google Scholar 

  8. Fang, Y., Chen, C., Yuan, Y., Tong, K.: Selective feature aggregation network with area-boundary constraints for polyp segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 302–310. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_34

    Chapter  Google Scholar 

  9. Fu, J., et al.: Dual attention network for scene segmentation. In: IEEE CVPR, pp. 3146–3154 (2019)

    Google Scholar 

  10. Gao, S.H., Cheng, M.M., Zhao, K., Zhang, X.Y., Yang, M.H., Torr, P.: Res2Net: a new multi-scale backbone architecture. IEEE Trans. Pattern Anal. Mach. Intell. 43(2), 652–662 (2019)

    Article  Google Scholar 

  11. Hou, Q., Zhang, L., Cheng, M.M., Feng, J.: Strip pooling: rethinking spatial pooling for scene parsing. In: IEEE CVPR, pp. 4003–4012 (2020)

    Google Scholar 

  12. Huang, C.H., Wu, H.Y., Lin, Y.L.: HarDNet-MSEG: a simple encoder-decoder polyp segmentation neural network that achieves over 0.9 mean dice and 86 FPS. arXiv preprint arXiv:2101.07172 (2021)

  13. Huang, Z., Wang, X., Huang, L., Huang, C., Wei, Y., Liu, W.: CCNet: Criss-cross attention for semantic segmentation. In: IEEE ICCV, pp. 603–612 (2019)

    Google Scholar 

  14. Jha, D., et al.: Kvasir-SEG: a segmented polyp dataset. In: Ro, Y.M., et al. (eds.) MMM 2020. LNCS, vol. 11962, pp. 451–462. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-37734-2_37

    Chapter  Google Scholar 

  15. Jha, D., et al.: Resunet++: an advanced architecture for medical image segmentation. In: IEEE ISM, pp. 225–2255. IEEE (2019)

    Google Scholar 

  16. Jia, X., Xing, X., Yuan, Y., Xing, L., Meng, M.Q.H.: Wireless capsule endoscopy: a new tool for cancer screening in the colon with deep-learning-based polyp recognition. Proc. IEEE 108(1), 178–197 (2019)

    Article  Google Scholar 

  17. Lin, G., Shen, C., Van Den Hengel, A., Reid, I.: Efficient piecewise training of deep structured models for semantic segmentation. In: IEEE CVPR, pp. 3194–3203 (2016)

    Google Scholar 

  18. Lin, Z., et al.: A structured self-attentive sentence embedding. arXiv preprint arXiv:1703.03130 (2017)

  19. Mamonov, A.V., Figueiredo, I.N., Figueiredo, P.N., Tsai, Y.H.R.: Automated polyp detection in colon capsule endoscopy. IEEE TMI 33(7), 1488–1502 (2014)

    Google Scholar 

  20. Margolin, R., Zelnik-Manor, L., Tal, A.: How to evaluate foreground maps? In: CVPR, pp. 248–255 (2014)

    Google Scholar 

  21. Máttyus, G., Luo, W., Urtasun, R.: Deeproadmapper: extracting road topology from aerial images. In: IEEE ICCV, pp. 3438–3446 (2017)

    Google Scholar 

  22. Murugesan, B., Sarveswaran, K., Shankaranarayana, S.M., Ram, K., Joseph, J., Sivaprakasam, M.: Psi-net: shape and boundary aware joint multi-task deep network for medical image segmentation. In: IEEE EMBC, pp. 7223–7226. IEEE (2019)

    Google Scholar 

  23. Qin, X., Zhang, Z., Huang, C., Gao, C., Dehghan, M., Jagersand, M.: Basnet: boundary-aware salient object detection. In: IEEE CVPR, pp. 7479–7489 (2019)

    Google Scholar 

  24. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  25. Shen, T., Zhou, T., Long, G., Jiang, J., Pan, S., Zhang, C.: DiSAN: directional self-attention network for RNN/CNN-free language understanding. In: AAAI Conference on Artificial Intelligence, vol. 32 (2018)

    Google Scholar 

  26. Silva, J., Histace, A., Romain, O., Dray, X., Granado, B.: Toward embedded detection of polyps in WCE images for early diagnosis of colorectal cancer. IJCARS 9(2), 283–293 (2014)

    Google Scholar 

  27. Tajbakhsh, N., Gurudu, S.R., Liang, J.: Automated polyp detection in colonoscopy videos using shape and context information. IEEE TMI 35(2), 630–644 (2015)

    Google Scholar 

  28. Vázquez, D., et al.: A benchmark for endoluminal scene segmentation of colonoscopy images. J. Healthc. Eng. 2017 (2017)

    Google Scholar 

  29. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: IEEE CVPR, pp. 7794–7803 (2018)

    Google Scholar 

  30. Wu, Z., Su, L., Huang, Q.: Stacked cross refinement network for edge-aware salient object detection. In: IEEE ICCV, pp. 7264–7273 (2019)

    Google Scholar 

  31. Yin, Z., Liang, K., Ma, Z., Guo, J.: Duplex contextual relation network for polyp segmentation. arXiv preprint arXiv:2103.06725 (2021)

  32. Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions. arXiv preprint arXiv:1511.07122 (2015)

  33. Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: ICML, pp. 7354–7363. PMLR (2019)

    Google Scholar 

  34. Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N., Liang, J.: UNet++: a nested U-Net architecture for medical image segmentation. In: Stoyanov, D., et al. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 3–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_1

    Chapter  Google Scholar 

Download references

Acknowledgement

This work is partially supported by the Natural Science Foundation of China (No. 61802336), and Yangzhou University“Qinglan Project”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuhan Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lu, L. et al. (2022). Boundary-Aware Polyp Segmentation Network. In: Yu, S., et al. Pattern Recognition and Computer Vision. PRCV 2022. Lecture Notes in Computer Science, vol 13537. Springer, Cham. https://doi.org/10.1007/978-3-031-18916-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-18916-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-18915-9

  • Online ISBN: 978-3-031-18916-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics