Skip to main content

Appraisal of Some of the Key Postulates Underlying mRNA Vaccines

  • Chapter
  • First Online:
Challenges and Opportunities of mRNA Vaccines Against SARS-CoV-2
  • 312 Accesses

Abstract

As described in the introduction, key foundational assumptions (Fig. 1.1) have guided the approval and large-scale deployment of mRNA vaccines. Arguably, they were most influential in their fast approval, and they shaped decision making and public understanding. Many of them have been widely broadcasted by mainstream media and give the impression of being rooted in clear and detailed modeling, a sound comprehension of underlying biological mechanisms, and supported by clinical experience.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbasi J (2020) Covid-19 and mRNA vaccines-first large test for a new approach. JAMA 324(12):1125–1127

    Article  CAS  Google Scholar 

  2. Baiersdörfer M, Boros G, Muramatsu H, Mahiny A, Vlatkovic I, Sahin U, Karikó K (2019) A facile method for the removal of dsRNA contaminant from in vitro-transcribed mRNA. Mol Therapy Nucl Acids 15:26–35

    Article  Google Scholar 

  3. Barabasi AL, Oltvai ZN (2004) Network biology: understanding the cell’s functional organization. Nat Rev Genet 5(2):101–113

    Article  CAS  Google Scholar 

  4. Bartoszewski R, Sikorski AF (2019) Editorial focus: understanding off-target effects as the key to successful RNAi therapy. Cell Mol Biol Lett 24(1):1–23

    Article  Google Scholar 

  5. Beissert T, Perkovic M, Vogel A, Erbar S, Walzer KC, Hempel T, Brill S, Haefner E, Becker R, Türeci Ö, et al (2020) A trans-amplifying RNA vaccine strategy for induction of potent protective immunity. Molecular Therapy 28(1):119–128

    Article  CAS  Google Scholar 

  6. Blakney AK, McKay PF, Shattock RJ (2018) Structural components for amplification of positive and negative strand veev splitzicons. Front Mol Biosci 5:71

    Article  Google Scholar 

  7. Bloom K, van den Berg F, Arbuthnot P (2020) Self-amplifying RNA vaccines for infectious diseases. Gene Therapy, 1–13

    Google Scholar 

  8. Braun KA, Young ET (2014) Coupling mRNA synthesis and decay. Mol Cell Biol 34(22):4078–4087

    Article  Google Scholar 

  9. Bregman A, Avraham-Kelbert M, Barkai O, Duek L, Guterman A, Choder M (2011) Promoter elements regulate cytoplasmic mRNA decay. Cell 147(7):1473–1483. https://doi.org/10.1016/j.cell.2011.12.005, http://www.sciencedirect.com/science/article/pii/S0092867411015030

  10. Buschmann MD, Carrasco MJ, Alishetty S, Paige M, Alameh MG, Weissman D (2021) Nanomaterial delivery systems for mRNA vaccines. Vaccines 9(1):65

    Article  CAS  Google Scholar 

  11. Carthew RW, Sontheimer EJ (2009) Origins and mechanisms of miRNAs and siRNAs. Cell 136(4):642–655

    Article  CAS  Google Scholar 

  12. Chandramouly G, Zhao J, McDevitt S, Rusanov T, Hoang T, Borisonnik N, Treddinick T, Lopezcolorado FW, Kent T, Siddique LA, et al (2021) Polθ reverse transcribes RNA and promotes RNA-templated DNA repair. Science Advances 7(24):eabf1771

    Google Scholar 

  13. Chen CYA, Shyu AB (2011) Mechanisms of deadenylation-dependent decay. Wiley Interdisciplinary Reviews: RNA 2(2):167–183

    Article  CAS  Google Scholar 

  14. Cheng MH, Zhang S, Porritt RA, Rivas MN, Paschold L, Willscher E, Binder M, Arditi M, Bahar I (2020) Superantigenic character of an insert unique to SARS-CoV-2 spike supported by skewed tcr repertoire in patients with hyperinflammation. Proc Natl Acad Sci

    Google Scholar 

  15. Collart MA, Reese JC (2014) Gene expression as a circular process: cross-talk between transcription and mRNA degradation in eukaryotes; International University of Andalusia (unia) Baeza, Spain

    Google Scholar 

  16. Coppin L, Leclerc J, Vincent A, Porchet N, Pigny P (2018) Messenger RNA life-cycle in cancer cells: emerging role of conventional and non-conventional RNA-binding proteins? Int J Mol Sci 19(3):650

    Article  Google Scholar 

  17. Crick F (1970) Central dogma of molecular biology. Nature 227(5258):561–563

    Article  CAS  Google Scholar 

  18. Crick FH (1958) On protein synthesis. In: Symp Soc Exp Biol, vol 12, p 8

    Google Scholar 

  19. Crouse J, Kalinke U, Oxenius A (2015) Regulation of antiviral t cell responses by type i interferons. Nat Rev Immunol 15(4):231–242

    Article  CAS  Google Scholar 

  20. De Beuckelaer A, Grooten J, De Koker S (2017) Type i interferons modulate cd8+ t cell immunity to mRNA vaccines. Trends Mol Med 23(3):216–226

    Article  Google Scholar 

  21. de Lorenzo V (2014) From the selfish gene to selfish metabolism: revisiting the central dogma. Bioessays 36(3):226–235

    Article  Google Scholar 

  22. Desfarges S, Ciuffi A (2012) Viral integration and consequences on host gene expression. In: Viruses: essential agents of life. Springer, pp 147–175

    Google Scholar 

  23. Doench JG, Petersen CP, Sharp PA (2003) siRNAs can function as miRNAs. Genes Dev 17(4):438–442

    Article  CAS  Google Scholar 

  24. Dori-Bachash M, Shalem O, Manor YS, Pilpel Y, Tirosh I (2012) Widespread promoter-mediated coordination of transcription and mRNA degradation. Genome Biology 13(12):R114

    Article  Google Scholar 

  25. Enssle J, Kugler W, Hentze MW, Kulozik AE (1993) Determination of mRNA fate by different RNA polymerase ii promoters. Proc Natl Acad Sci 90(21):10091–10095

    Article  CAS  Google Scholar 

  26. Ferrell Jr JE (2002) Self-perpetuating states in signal transduction: positive feedback, double-negative feedback and bistability. Curr Opin Cell Biol 14(2):140–148

    Article  CAS  Google Scholar 

  27. Franco-Serrano L, Huerta M, Hernández S, Cedano J, Perez-Pons J, Piñol J, Mozo-Villarias A, Amela I, Querol E (2018) Multifunctional proteins: involvement in human diseases and targets of current drugs. Protein J 37(5):444–453

    Article  CAS  Google Scholar 

  28. Franklin S, Vondriska TM (2011) Genomes, proteomes, and the central dogma. Circ Cardiovasc Genet 4(5):576–576

    Article  Google Scholar 

  29. Fung TS, Liu DX (2018) Post-translational modifications of coronavirus proteins: roles and function. Future Virology 13(6):405–430

    Article  CAS  Google Scholar 

  30. Garneau NL, Wilusz J, Wilusz CJ (2007) The highways and byways of mRNA decay. Nat Rev Mol Cell Biol 8(2):113–126

    Article  CAS  Google Scholar 

  31. Gerstberger S, Hafner M, Tuschl T (2014) A census of human RNA-binding proteins. Nat Rev Genet 15(12):829–845

    Article  CAS  Google Scholar 

  32. Gholamalipour Y, Karunanayake MA, Martin CT (2018) 3’ end additions by T7 RNA polymerase are RNA self-templated, distributive and diverse in character-RNA-Seq analyses. Nucl Acids Res 46(18):9253–9263. https://doi.org/10.1093/nar/gky796, https://academic.oup.com/nar/article-pdf/46/18/9253/26001463/gky796.pdf

  33. Gorgoni B, Gray NK (2004) The roles of cytoplasmic poly (a)-binding proteins in regulating gene expression: a developmental perspective. Brief Funct Genomics 3(2):125–141

    Article  CAS  Google Scholar 

  34. Goswami R, Awasthi A (2020) Editorial: T cell differentiation and function in tissue inflammation. Front Immunol 11:289. https://doi.org/10.3389/fimmu.2020.00289, https://www.frontiersin.org/article/10.3389/fimmu.2020.00289

  35. Grant OC, Montgomery D, Ito K, Woods RJ (2020) Analysis of the SARS-CoV-2 spike protein glycan shield: implications for immune recognition. bioRxiv

    Google Scholar 

  36. Haimovich G, Choder M, Singer RH, Trcek T (2013) The fate of the messenger is pre-determined: a new model for regulation of gene expression. Biochim Biophys Acta (BBA)-Gene Regul Mech 1829(6-7):643–653

    Article  CAS  Google Scholar 

  37. Heinemann JA (2019) Should dsRNA treatments applied in outdoor environments be regulated? Environment International 132:104856

    Article  Google Scholar 

  38. Hornung V, Ellegast J, Kim S, Brzózka K, Jung A, Kato H, Poeck H, Akira S, Conzelmann KK, Schlee M, et al (2006) 5’-triphosphate RNA is the ligand for RIG-I. Science 314(5801):994–997

    Article  Google Scholar 

  39. Hütter J, Rödig JV, Höper D, Seeberger PH, Reichl U, Rapp E, Lepenies B (2013) Toward animal cell culture-based influenza vaccine design: viral hemagglutinin n-glycosylation markedly impacts immunogenicity. J Immunol 190(1):220–230

    Article  Google Scholar 

  40. Iyer LM, Koonin EV, Aravind L (2003) Evolutionary connection between the catalytic subunits of DNA-dependent RNA polymerases and eukaryotic RNA-dependent RNA polymerases and the origin of RNA polymerases. BMC Struct Biol 3(1):1–23

    Article  Google Scholar 

  41. Jackson NA, Kester KE, Casimiro D, Gurunathan S, DeRosa F (2020) The promise of mRNA vaccines: A biotech and industrial perspective. NPJ Vaccines 5(1):1–6

    Article  Google Scholar 

  42. Kanyavuz A, Marey-Jarossay A, Lacroix-Desmazes S, Dimitrov JD (2019) Breaking the law: unconventional strategies for antibody diversification. Nat Rev Immunol 19(6):355–368

    Article  CAS  Google Scholar 

  43. Karikó K, Buckstein M, Ni H, Weissman D (2005) Suppression of RNA recognition by toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity 23(2):165–175

    Article  Google Scholar 

  44. Kariko K, Muramatsu H, Ludwig J, Weissman D (2011) Generating the optimal mRNA for therapy: HPLC purification eliminates immune activation and improves translation of nucleoside-modified, protein-encoding mRNA. Nucl Acids Res 39(21):e142–e142

    Article  CAS  Google Scholar 

  45. Lindgren G, Ols S, Liang F, Thompson EA, Lin A, Hellgren F, Bahl K, John S, Yuzhakov O, Hassett KJ, Brito LA, Salter H, Ciaramella G, Loré K (2017) Induction of robust b cell responses after influenza mRNA vaccination is accompanied by circulating hemagglutinin-specific ICOS+ PD-1+ CXCR3+ t follicular helper cells. Front Immunol 8:1539. https://doi.org/10.3389/fimmu.2017.01539, https://www.frontiersin.org/article/10.3389/fimmu.2017.01539

  46. Lyons-Weiler J (2020) Pathogenic priming likely contributes to serious and critical illness and mortality in covid-19 via autoimmunity. J Translat Autoimmunity 3:100051

    Article  Google Scholar 

  47. Maruggi G, Zhang C, Li J, Ulmer JB, Yu D (2019) mRNA as a transformative technology for vaccine development to control infectious diseases. Molecular Therapy 27(4):757–772

    Article  CAS  Google Scholar 

  48. Mu X, Greenwald E, Ahmad S, Hur S (2018) An origin of the immunogenicity of in vitro transcribed RNA. Nucl Acids Res 46(10):5239–5249. https://doi.org/10.1093/nar/gky177, https://academic.oup.com/nar/article-pdf/46/10/5239/24962288/gky177.pdf

  49. Mueller S (2021) Rarely recognized antibody diversification in covid-19 evolution to counteract advanced SARS-CoV-2 evasion strategies, and implications for prophylactic treatment. Front Physiol 12:1186. https://doi.org/10.3389/fphys.2021.624675, https://www.frontiersin.org/article/10.3389/fphys.2021.624675

  50. Nelson DL, Lehninger AL, Cox MM (2008) Lehninger principles of biochemistry. Macmillan

    Google Scholar 

  51. Neumeier J, Meister G (2021) siRNA specificity: Rnai mechanisms and strategies to reduce off-target effects. Front Plant Sci 11:2196. https://doi.org/10.3389/fpls.2020.526455, https://www.frontiersin.org/article/10.3389/fpls.2020.526455

  52. Oostra M, De Haan C, De Groot R, Rottier P (2006) Glycosylation of the severe acute respiratory syndrome coronavirus triple-spanning membrane proteins 3a and m. J Virol 80(5):2326–2336

    Article  CAS  Google Scholar 

  53. Organization WH, et al (2020) mRNA vaccines against covid-19: Pfizer-biontech covid-19 vaccine bnt162b2: prepared by the strategic advisory group of experts (sage) on immunization working group on covid-19 vaccines, 22 december 2020. Tech. rep., World Health Organization

    Google Scholar 

  54. Pardi N, Hogan MJ, Naradikian MS, Parkhouse K, Cain DW, Jones L, Moody MA, Verkerke HP, Myles A, Willis E, et al (2018) Nucleoside-modified mRNA vaccines induce potent t follicular helper and germinal center b cell responses. J Exp Med 215(6):1571–1588

    Article  CAS  Google Scholar 

  55. Pardi N, Hogan MJ, Porter FW, Weissman D (2018) mRNA vaccines-a new era in vaccinology. Nat Rev Drug Discov 17(4):261

    Article  CAS  Google Scholar 

  56. Peng W, de Vries RP, Grant OC, Thompson AJ, McBride R, Tsogtbaatar B, Lee PS, Razi N, Wilson IA, Woods RJ, et al (2017) Recent h3n2 viruses have evolved specificity for extended, branched human-type receptors, conferring potential for increased avidity. Cell Host Microbe 21(1):23–34

    Article  CAS  Google Scholar 

  57. Pepini T, Pulichino AM, Carsillo T, Carlson AL, Sari-Sarraf F, Ramsauer K, Debasitis JC, Maruggi G, Otten GR, Geall AJ, et al (2017) Induction of an ifn-mediated antiviral response by a self-amplifying RNA vaccine: implications for vaccine design. J Immunol 198(10):4012–4024

    Article  CAS  Google Scholar 

  58. Pichlmair A, Schulz O, Tan CP, Näslund TI, Liljeström P, Weber F, e Sousa CR (2006) Rig-i-mediated antiviral responses to single-stranded RNA bearing 5’-phosphates. Science 314(5801):997–1001

    Google Scholar 

  59. Robbiani DF, Deroubaix S, Feldhahn N, Oliveira TY, Callen E, Wang Q, Jankovic M, Silva IT, Rommel PC, Bosque D, et al (2015) Plasmodium infection promotes genomic instability and aid-dependent b cell lymphoma. Cell 162(4):727–737

    Article  CAS  Google Scholar 

  60. Roy B, Robb G (2018) Use of thermostable RNA polymerases to produce RNAs having reduced immunogenicity. US Patent 10,034,951

    Google Scholar 

  61. Roy B, Wu MZ (2019) Understanding and overcoming the immune response from synthetic mRNAs: New england biolabs focuses on formation and detection of dsRNA byproducts during in vitro transcription. Genet Eng Biotechnol News 39(12):56–58

    Article  Google Scholar 

  62. Sahin U, Karikó K, Türeci Ö (2014) mRNA-based therapeutics—developing a new class of drugs. Nat Revi Drug Discov 13(10):759–780

    Article  CAS  Google Scholar 

  63. Samanta B, Joyce GF (2017) A reverse transcriptase ribozyme. Elife 6:e31153

    Article  Google Scholar 

  64. Schlee M, Roth A, Hornung V, Hagmann CA, Wimmenauer V, Barchet W, Coch C, Janke M, Mihailovic A, Wardle G, et al (2009) Recognition of 5’ triphosphate by rig-i helicase requires short blunt double-stranded RNA as contained in panhandle of negative-strand virus. Immunity 31(1):25–34

    Article  CAS  Google Scholar 

  65. Siwaszek A, Ukleja M, Dziembowski A (2014) Proteins involved in the degradation of cytoplasmic mRNA in the major eukaryotic model systems. RNA Biology 11(9):1122–1136

    Article  Google Scholar 

  66. Sørensen B, Susrud A, Dalgleish A (2020) Biovacc-19: A candidate vaccine for covid-19 (sars-cov-2) developed from analysis of its general method of action for infectivity. QRB Discovery, 1–17

    Google Scholar 

  67. Su Y, Ghodke PP, Egli M, Li L, Wang Y, Guengerich FP (2019) Human dna polymerase η has reverse transcriptase activity in cellular environments. J Biol Chem 294(15):6073–6081

    Article  CAS  Google Scholar 

  68. Van Hoecke L, Roose K, Ballegeer M, Zhong Z, Sanders NN, De Koker S, Saelens X, Van Lint S (2020) The opposing effect of type i ifn on the t cell response by non-modified mRNA-lipoplex vaccines is determined by the route of administration. Mol Ther-Nucleic Acids 22:373–381

    Article  Google Scholar 

  69. Venkatesan K, Rual JF, Vazquez A, Stelzl U, Lemmens I, Hirozane-Kishikawa T, Hao T, Zenkner M, Xin X, Goh KI, et al (2009) An empirical framework for binary interactome mapping. Nature Methods 6(1):83–90

    Article  CAS  Google Scholar 

  70. Verbeke R, Lentacker I, De Smedt SC, Dewitte H (2019) Three decades of messenger RNA vaccine development. Nano Today 28:100766

    Article  CAS  Google Scholar 

  71. WHO (2021) The moderna COVID-19 (mRNA-1273) vaccine: what you need to know. https://www.who.int/news-room/feature-stories/detail/the-moderna-covid-19-mrna-1273-vaccine-what-you-need-to-know

  72. Wolff JA, Malone RW, Williams P, Chong W, Acsadi G, Jani A, Felgner PL (1990) Direct gene transfer into mouse muscle in vivo. Science 247(4949):1465–1468

    Article  CAS  Google Scholar 

  73. Wu MZ, Asahara H, Tzertzinis G, Roy B (2020) Synthesis of low immunogenicity RNA with high-temperature in vitro transcription. RNA 26(3):345–360

    Article  CAS  Google Scholar 

  74. Yoneyama M, Fujita T (2010) Recognition of viral nucleic acids in innate immunity. Rev Med Virol 20(1):4–22

    Article  CAS  Google Scholar 

  75. Zamore PD, Haley B (2005) Ribo-gnome: the big world of small RNAs. Science 309(5740):1519–1524

    Article  CAS  Google Scholar 

  76. Zhang C, Maruggi G, Shan H, Li J (2019) Advances in mRNA vaccines for infectious diseases. Front Immunol 10:594. https://doi.org/10.3389/fimmu.2019.00594, https://www.frontiersin.org/article/10.3389/fimmu.2019.00594

  77. Zhang L, Richards A, Khalil A, Wogram E, Ma H, Young RA, Jaenisch R (2020) SARS-CoV-2 RNA reverse-transcribed and integrated into the human genome. bioRxiv

    Google Scholar 

  78. Zhang L, Richards A, Barrasa MI, Hughes SH, Young RA, Jaenisch R (2021) Reverse-transcribed sars-cov-2 RNA can integrate into the genome of cultured human cells and can be expressed in patient-derived tissues. Proc Natl Acad Sci 118(21)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mueller, S. (2023). Appraisal of Some of the Key Postulates Underlying mRNA Vaccines. In: Challenges and Opportunities of mRNA Vaccines Against SARS-CoV-2. Springer, Cham. https://doi.org/10.1007/978-3-031-18903-6_2

Download citation

Publish with us

Policies and ethics