Skip to main content

Clinical Management of Endotoxemia: Volume Support

  • Chapter
  • First Online:
Endotoxin Induced-Shock: a Multidisciplinary Approach in Critical Care

Abstract

The inflammatory storm, as well as the direct effect of endotoxins on endothelium, may induce hemodynamic instability. Targeted fluid replacement plays a key role in endotoxic shock, with the aim of balancing resuscitation thus avoiding additional harm. Many types of solutions are available for fluid administration. Currently, some study groups promote the use of intravenous balanced solutions whilst chloride administration may impact on renal function even at low doses by causing both tubular dysfunction and arteriolar vasoconstriction. Synthetic colloids usage is contraindicated. There is still a controversial role of albumin; SSC2021 guidelines suggest administering albumin to avoid the infusion of an exaggerated volume of crystalloids to restore hemodynamic stability (weak recommendation, low quality of evidence). The hemodynamic effects and the reliability of these dynamic indices of fluid responsiveness are well described in literature. Further research on this topic is warranted, to avoid crossing the threshold between active management and noxious actions, a daily challenge in critical care medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aya HD, Ster IC, Fletcher N, Grounds RM, Rhodes A, Cecconi M. Pharmacodynamic analysis of a fluid challenge. Crit Care Med. 2016;44(5):880–91.

    Article  CAS  Google Scholar 

  2. Lambden S, Creagh-Brown BC, Hunt J, Summers C, Forni LG. Definitions and pathophysiology of vasoplegic shock. Crit Care. 2018;22(1):174.

    Article  Google Scholar 

  3. Lange M, Enkhbaatar P, Nakano Y, Traber DL. Role of nitric oxide in shock: the large animal perspective. Front Biosci. 2009;14(5):1979–89.

    Article  CAS  Google Scholar 

  4. Draisma A, Dorresteijn MJ, Bouw MP, van der Hoeven JG, Pickkers P. The role of cytokines and inducible nitric oxide synthase in endotoxemia-induced endothelial dysfunction. J Cardiovasc Pharmacol. 2010;55(6):595–600.

    Article  CAS  Google Scholar 

  5. Kirkebøen KA, Strand OA. The role of nitric oxide in sepsis—an overview. Acta Anaesthesiol Scand. 1999;43(3):275–88.

    Article  Google Scholar 

  6. Villela NR, dos Santos AOMT, de Miranda ML, Bouskela E. Fluid resuscitation therapy in endotoxemic hamsters improves survival and attenuates capillary perfusion deficits and inflammatory responses by a mechanism related to nitric oxide. J Transl Med. 2014;12(1):232.

    Article  Google Scholar 

  7. Bakker J, Grover R, McLuckie A, Holzapfel L, Andersson J, Lodato R, et al. Administration of the nitric oxide synthase inhibitor NG-methyl- L-arginine hydrochloride (546C88) by intravenous infusion for up to 72 hours can promote the resolution of shock in patients with severe sepsis: results of a randomized, double-blind, placebo-controlled multicenter study (study no. 144-002). Crit Care Med. 2004;32(1):1–12.

    Article  CAS  Google Scholar 

  8. Malbrain MLNG, Langer T, Annane D, Gattinoni L, Elbers P, Hahn RG, et al. Intravenous fluid therapy in the perioperative and critical care setting: executive summary of the International Fluid Academy (IFA). Ann Intensive Care. 2020;10(1):64.

    Article  Google Scholar 

  9. Shinotsuka CR, Caironi P, Villois P, Fontana V, Vincent J, Creteur J, et al. Assessment of chloride levels on renal function after cardiac arrest. Intensive Care Med Exp. 2015;3(1):1–2.

    Google Scholar 

  10. Evans L, Rhodes A, Alhazzani W, Antonelli M, Coopersmith CM, French C, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021. Intensive Care Med. 2021;47:62.

    Article  Google Scholar 

  11. Cecconi M, Hofer C, Teboul JL, Pettila V, Wilkman E, Molnar Z, et al. Fluid challenges in intensive care: the FENICE study: a global inception cohort study. Intensive Care Med. 2015;41(9):1529–37.

    Article  Google Scholar 

  12. Estrada CA, Murugan R. Hydroxyethyl starch in severe sepsis: end of starch era? Crit Care. 2013;17(2):310.

    Article  Google Scholar 

  13. Belcher DA, Williams AT, Palmer AF, Cabrales P. Polymerized albumin restores impaired hemodynamics in endotoxemia and polymicrobial sepsis. Sci Rep. 2021;11(1):10834.

    Article  CAS  Google Scholar 

  14. Cecconi M, Parsons AK, Rhodes A. What is a fluid challenge? Curr Opin Crit Care. 2011;17(3):290–5.

    Article  Google Scholar 

  15. Cecconi M, Monge García M, Gracia Romero M, Mellinghoff J, Caliandro F, Grounds R, et al. Use of pulse pressure variation and stroke volume variation in spontaneously breathing patients to assess dynamic arterial elastance and to predict arterial pressure response to fluid administration. Critical Care. 2014;18(1):1–182.

    Google Scholar 

  16. Esposito ML, Bader Y, Morine KJ, Kiernan MS, Pham DT, Burkhoff D, Navin K, Kapur MD. Mechanical circulatory support devices for acute right ventricular failure. Circulation. 2017;136:314–26.

    Article  Google Scholar 

  17. Miller A, Mandeville J. Predicting and measuring fluid responsiveness with echocardiography. Echo Res Pract. 2016;3(2):G1.

    Article  Google Scholar 

  18. Lujan Varas J, Martinez Díaz C, Blancas R, Martinez Gonzalez O, Ruiz L, Montero M, et al. Inferior vena cava distensibility index predicting fluid responsiveness in ventilated patients. Intensive Care Med Exp. 2015;3(Suppl 1):A600.

    Article  Google Scholar 

  19. Vignon P, Vignon P. Evaluation of fluid responsiveness in ventilated septic patients: back to venous return. Intensive Care Med. 2004;30:1699–701.

    Article  Google Scholar 

  20. Feissel M, Michard F, Mangin I, Ruyer O, Faller JP, Teboul JL. Respiratory changes in aortic blood velocity as an indicator of fluid responsiveness in ventilated patients with septic shock. Chest. 2001;119(3):867–73.

    Article  CAS  Google Scholar 

  21. Jozwiak M, Teboul JL, Monnet X. Extravascular lung water in critical care: recent advances and clinical applications. Ann Intensive Care. 2015;5:38.

    Article  Google Scholar 

  22. Byrne L, Obonyo NG, Diab SD, Dunster KR, Passmore MR, Boon AC, et al. Unintended consequences: fluid resuscitation worsens shock in an ovine model of endotoxemia. Am J Respir Crit Care Med. 2018;198(8):1043–54.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimiliano Greco .

Editor information

Editors and Affiliations

7.1 Electronic Supplementary Material

Data 7.1

(PPTX 201 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Savi, M., Montisci, A., Greco, M. (2023). Clinical Management of Endotoxemia: Volume Support. In: De Rosa, S., Villa, G. (eds) Endotoxin Induced-Shock: a Multidisciplinary Approach in Critical Care. Springer, Cham. https://doi.org/10.1007/978-3-031-18591-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-18591-5_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-18590-8

  • Online ISBN: 978-3-031-18591-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics