Skip to main content

Muscular and Cerebral Tissue Oxygenation and Blood Flow

  • Chapter
  • First Online:
Whole-Body Cryostimulation

Abstract

Cryotherapy has garnered significant attention in several medical and high-level sport performance domains. Although it is necessary to evaluate this technique’s efficacy in recovery processes, numerous studies have shown its usefulness in improving physical performance. Multiple physiological and psychological mechanisms have been identified. The present chapter explores the complex interplay between cryotherapy and its effects on vascular and haemodynamic factors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bouzigon R, Dupuy O, Tiemessen I, De Nardi M, Bernard JP, Mihailovic T, Theurot D, Miller ED, Lombardi G, Dugué BM. Cryostimulation for post-exercise recovery in athletes: a consensus and position paper. Front Sports Act Living. 2021;3:688828. https://doi.org/10.3389/fspor.2021.688828.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Moore E, Fuller JT, Bellenger CR, Saunders S, Halson SL, Broatch JR, Buckley JD. Effects of cold-water immersion compared with other recovery modalities on athletic performance following acute strenuous exercise in physically active participants: a systematic review, meta-analysis, and meta-regression. Sports Med. 2023;53:687–705. https://doi.org/10.1007/s40279-022-01800-1.

    Article  PubMed  Google Scholar 

  3. Dupuy O, Douzi W, Theurot D, Bosquet L, Dugué B. An evidence-based approach for choosing post-exercise recovery techniques to reduce markers of muscle damage, soreness, fatigue, and inflammation: a systematic review with meta-analysis. Front Physiol. 2018;9:403. https://doi.org/10.3389/fphys.2018.00403.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Banfi G, Melegati G, Barassi A, Dogliotti G, Melzi d’Eril G, Dugué B, et al. Effects of whole-body cryotherapy on serum mediators of inflammation and serum muscle enzymes in athletes. J Thermal Biol. 2009;34:55–9. https://doi.org/10.1016/j.jtherbio.2008.10.003.

    Article  CAS  Google Scholar 

  5. Ihsan M, Watson G, Abbiss CR. What are the physiological mechanisms for post-exercise cold water immersion in the recovery from prolonged endurance and intermittent exercise? Sports Med. 2016;46:1095–109. https://doi.org/10.1007/s40279-016-0483-3.

    Article  PubMed  Google Scholar 

  6. Leeder J, Gissane C, van Someren K, Gregson W, Howatson G. Cold water immersion and recovery from strenuous exercise: a meta-analysis. Br J Sports Med. 2012;46:233–40. https://doi.org/10.1136/bjsports-2011-090061.

    Article  PubMed  Google Scholar 

  7. Bouzigon R, Grappe F, Ravier G, Dugué B. Whole- and partial-body cryostimulation/cryotherapy: current technologies and practical applications. J Thermal Biol. 2016;61:67–81. https://doi.org/10.1016/j.jtherbio.2016.08.009.

    Article  Google Scholar 

  8. Merrick MA. Secondary injury after musculoskeletal trauma: a review and update. J Athl Train. 2002;37:209–17.

    PubMed  PubMed Central  Google Scholar 

  9. Swenson C, Swärd L, Karlsson J. Cryotherapy in sports medicine. Scand J Med Sci Sports. 2007;6:193–200. https://doi.org/10.1111/j.1600-0838.1996.tb00090.x.

    Article  Google Scholar 

  10. Minett GM, Duffield R, Billaut F, Cannon J, Portus MR, Marino FE. Cold-water immersion decreases cerebral oxygenation but improves recovery after intermittent-sprint exercise in the heat: cooling for recovery in the heat. Scand J Med Sci Sports. 2014;24:656–66. https://doi.org/10.1111/sms.12060.

    Article  CAS  PubMed  Google Scholar 

  11. Mantoni T, Belhage B, Pedersen LM, Pott FC. Reduced cerebral perfusion on sudden immersion in ice water: a possible cause of drowning. Aviat Space Environ Med. 2007;78:374–6.

    PubMed  Google Scholar 

  12. Mantoni T, Rasmussen JH, Belhage B, Pott FC. Voluntary respiratory control and cerebral blood flow velocity upon ice-water immersion. Aviat Space Environ Med. 2008;79:765–8. https://doi.org/10.3357/ASEM.2216.2008.

    Article  PubMed  Google Scholar 

  13. Nybo L, Møller K, Volianitis S, Nielsen B, Secher NH. Effects of hyperthermia on cerebral blood flow and metabolism during prolonged exercise in humans. J Appl Physiol. 2002;93:58–64. https://doi.org/10.1152/japplphysiol.00049.2002.

    Article  PubMed  Google Scholar 

  14. Nybo L, Rasmussen P. Inadequate cerebral oxygen delivery and central fatigue during strenuous exercise. Exerc Sport Sci Rev. 2007;35:110. https://doi.org/10.1097/jes.0b013e3180a031ec.

    Article  PubMed  Google Scholar 

  15. Ihsan M, Watson G, Lipski M, Abbiss CR. Influence of postexercise cooling on muscle oxygenation and blood volume changes. Med Sci Sports Exerc. 2013;45:876–82. https://doi.org/10.1249/MSS.0b013e31827e13a2.

    Article  CAS  PubMed  Google Scholar 

  16. Vaile J, O’Hagan C, Stefanovic B, Walker M, Gill N, Askew CD. Effect of cold water immersion on repeated cycling performance and limb blood flow. Bri J Sports Med. 2011;45:825–9. https://doi.org/10.1136/bjsm.2009.067272.

    Article  CAS  Google Scholar 

  17. Jones B, Waterworth S, Tallent J, Rogerson M, Morton C, Moran J, Southall-Edwards R, Cooper CE, McManus C. Influence of cold-water immersion on lower limb muscle oxygen consumption, as measured by near-infrared spectroscopy. J Athl Train. 2023; https://doi.org/10.4085/1062-6050-0532.22. (in press)

  18. Stanley J, Peake JM, Coombes JS, Buchheit M. Central and peripheral adjustments during high-intensity exercise following cold water immersion. Eur J Appl Physiol. 2014;114:147–63. https://doi.org/10.1007/s00421-013-2755-z.

    Article  PubMed  Google Scholar 

  19. Gregson W, Black MA, Jones H, Milson J, Morton J, Dawson B, et al. Influence of cold water immersion on limb and cutaneous blood flow at rest. Am J Sports Med. 2011;39:1316–23. https://doi.org/10.1177/0363546510395497.

    Article  PubMed  Google Scholar 

  20. Mawhinney C, Jones H, Low DA, Green DJ, Howatson G, Gregson W. Influence of cold-water immersion on limb blood flow after resistance exercise. Eur J Sport Sci. 2017a;17:519–29.

    Article  PubMed  Google Scholar 

  21. Selfe J, Alexander J, Costello JT, May K, Garratt N, Atkins S, et al. The effect of three different (−135 °C) whole body cryotherapy exposure durations on elite rugby league players. PLoS ONE. 2014;9:e86420. https://doi.org/10.1371/journal.pone.0086420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Haq A, Ribbans WJ, Hohenauer E, Baross AW. The comparative effect of different timings of whole body cryotherapy treatment with cold water immersion for post-exercise recovery. Front Sports Act Living. 2022;4:940516. https://doi.org/10.3389/fspor.2022.940516.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Mawhinney C, Low DA, Jones H, Green DJ, Costello JT, Gregson W. Cold water mediates greater reductions in limb blood flow than whole body cryotherapy. Med Sci Sports Exerc. 2017b;49:1252–60. https://doi.org/10.1249/MSS.0000000000001223.

    Article  PubMed  Google Scholar 

  24. Hohenauer E, Costello JT, Stoop R, Küng UM, Clarys P, Deliens T, et al. Cold-water or partial-body cryotherapy? Comparison of physiological responses and recovery following muscle damage. Scand J Med Sci Sports. 2018;28:1252–62. https://doi.org/10.1111/sms.13014.

    Article  CAS  PubMed  Google Scholar 

  25. Theurot D, Dupuy O, Louis J, Douzi W, Morin R, Arc-Chagnaud C, Dugué B. Partial-body cryostimulation does not impact peripheral microvascular responsiveness but reduces muscular metabolic O2 consumption (mV˙O2) at rest. Cryobiology. 2023;112:104561. https://doi.org/10.1016/j.cryobiol.2023.104561.

    Article  CAS  PubMed  Google Scholar 

  26. Hohenauer E, Costello JT, Deliens T, Clarys P, Stoop R, Clijsen R. Partial-body cryotherapy (−135 °C) and cold-water immersion (10 °C) after muscle damage in females. Scand J Med Sci Sports. 2020;30:485–95. https://doi.org/10.1111/sms.13593.

    Article  PubMed  Google Scholar 

  27. Theurot D, Dugué B, Douzi W, Guitet P, Louis J, Dupuy O. Impact of acute partial-body cryostimulation on cognitive performance, cerebral oxygenation, and cardiac autonomic activity. Sci Rep. 2021;11:1–11. https://doi.org/10.1038/s41598-021-87089-y.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Dupuy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Theurot, D., Dugué, B., Dupuy, O. (2024). Muscular and Cerebral Tissue Oxygenation and Blood Flow. In: Capodaglio, P. (eds) Whole-Body Cryostimulation. Springer, Cham. https://doi.org/10.1007/978-3-031-18545-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-18545-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-18544-1

  • Online ISBN: 978-3-031-18545-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics