Skip to main content

On Permuting Some Coordinates of Polytopes

  • Conference paper
  • First Online:
Combinatorial Optimization (ISCO 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13526))

Included in the following conference series:

  • 346 Accesses

Abstract

Let \(P\subseteq \mathbb {R}^{d}\) be a polytope with coordinates labeled \(x_1,\ldots ,x_d\). Define \(\textrm{perm}_I(P)\) to be the polytope obtained by taking every permutation \(\sigma \) whose set of fixed-points is \([d]\setminus I\), permuting the coordinates of every point in P according to \(\sigma \) and taking the convex hull of all such points. Also, define \(\textrm{sort}(P)\) to be the polytope obtained by taking each vertex of P in “sorted order".

In this article we study the extension complexity of \(\textrm{perm}_I(P)\) and \(\textrm{sort}(P)\) in terms of the extension complexity of P. A result by Kaibel and Pashkovich states that if \(\textrm{sort}(P)\subseteq P\) and \(I=[d]\) then the extension complexity of \(\textrm{perm}_I(P)\) is bounded above by a polynomial of the extension complexity of P. We show that the extension complexity of \(\textrm{perm}_I(P)\) can increase exponentially if \(I\ne [d]\) even if the vertices of P contain only three values, say 0, 1,  or 2 at each of the coordinates \(x_i\) for \(i\in I\). Furthermore, the extension complexity of \(\textrm{sort}(P)\) can be exponentially larger than that of P. We also discuss the implications for the 0/1 case.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Avis, D., Tiwary, H.R.: On the extension complexity of combinatorial polytopes. Math. Program. 153(1), 95–115 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Balas, E.: Disjunctive programming: properties of the convex hull of feasible points. Disc. Appl. Math. 89(1–3), 3–44 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Conforti, M., Cornuéjols, G., Zambelli, G.: Extended formulations in combinatorial optimization. Ann. OR 204(1), 97–143 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Conforti, M., Pashkovich, K.: The projected faces property and polyhedral relations. In: Mathematical Programming, pp. 1–12 (2015). ISSN: 0025–5610

    Google Scholar 

  5. Fiorini, S., Massar, S., Pokutta, S., Tiwary, H.R., de Wolf, R.: Exponential lower bounds for polytopes in combinatorial optimization. J. ACM 62(2), 17 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness (1979)

    Google Scholar 

  7. Göös, M., Jain, R., Watson, T.: Extension complexity of independent set polytopes. SIAM J. Comput. 47(1), 241–269 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  8. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization, volume 2 of Algorithms and Combinatorics. Springer, Heidelberg (1988). https://doi.org/10.1007/978-3-642-78240-4. ISBN: 978-3-642-97883-8

  9. Grünbaum, B., Kaibel, V., Klee, V., Ziegler, G.M.: Convex polytopes. Springer, New York (2003). https://doi.org/10.1007/978-1-4613-0019-9. ISBN: 9780387004242

  10. Johnson, D.S.: The np-completeness column: an ongoing guide. J. Algor. 8(3), 438–448 (1987). ISSN 0196–6774

    Article  MathSciNet  MATH  Google Scholar 

  11. Kaibel, V.: Extended formulations in combinatorial optimization. Optima 85, 2–7 (2011)

    Google Scholar 

  12. Kaibel, V., Pashkovich, K.: Constructing extended formulations from reflection relations. In: 15th International Conference, IPCO 2011, pp. 287–300 (2011)

    Google Scholar 

  13. Kolman, P., Koutecký, M., Tiwary, H.R.: Extension complexity, MSO logic, and treewidth. Disc. Math. Theor. Comput. Sci. 22(4) (2020)

    Google Scholar 

  14. Loebl, M.: Discrete mathematics in statistical physics - introductory lectures. In: Advanced Lectures in Mathematics. Vieweg (2009). ISBN: 978-3-528-03219-7

    Google Scholar 

  15. Margot, F.: Composition de polytopes combinatoires: une approche par projection. PhD thesis, EPFL, Switzerland (1994)

    Google Scholar 

  16. Rothvoß, T.: The matching polytope has exponential extension complexity. J. ACM 64(6), 41:1–41:19 (2017)

    Google Scholar 

  17. Ziegler, G.M.: Lectures on polytopes, volume 152 of Graduate Texts in Mathematics, pp. ix+370. Springer-Verlag, Heidelberg (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Raj Tiwary .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tiwary, H.R. (2022). On Permuting Some Coordinates of Polytopes. In: Ljubić, I., Barahona, F., Dey, S.S., Mahjoub, A.R. (eds) Combinatorial Optimization. ISCO 2022. Lecture Notes in Computer Science, vol 13526. Springer, Cham. https://doi.org/10.1007/978-3-031-18530-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-18530-4_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-18529-8

  • Online ISBN: 978-3-031-18530-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics