Skip to main content

On Minimally Non-firm Binary Matrices

  • Conference paper
  • First Online:
Combinatorial Optimization (ISCO 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13526))

Included in the following conference series:

  • 326 Accesses

Abstract

For a binary matrix \({\textbf {X}}\), the Boolean rank \(br({\textbf {X}})\) is the smallest integer k for which \({\textbf {X}}\) equals the Boolean sum of k rank-1 binary matrices, and the isolation number \(i({\textbf {X}})\) is the maximum number of 1s no two of which are in a same row, column and a \(2\times 2\) submatrix of all 1s. In this paper, we continue Lubiw’s study of firm matrices. \({\textbf {X}}\) is said to be firm if \(i({\textbf {X}})=br({\textbf {X}})\) and this equality holds for all its submatrices. We show that the stronger concept of superfirmness of \({\textbf {X}}\) is equivalent to having no odd holes in the rectangle cover graph of \({\textbf {X}}\), the graph in which \(br({\textbf {X}})\) and \(i({\textbf {X}})\) translate to the clique cover and the independence number, respectively. A binary matrix is minimally non-firm if it is not firm but all of its proper submatrices are. We introduce two matrix operations that lead to generalised binary matrices and use these operations to derive four infinite classes of minimally non-firm matrices. We hope that our work may pave the way towards a complete characterisation of firm matrices via forbidden submatrices.

Supported by The Alan Turing Institute, London, UK

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amilhastre, J., Vilarem, M., Janssen, P.: Complexity of minimum biclique cover and minimum biclique decomposition for bipartite domino-free graphs. Discrete Appl. Math. 86(2), 125–144 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Berge, C.: Hypergraphs - Combinatorics of Finite Sets, vol. 45. North-Holland Mathematical Library, North-Holland (1989)

    Google Scholar 

  3. de Caen, D., Gregory, D., Pullman, N.J.: The Boolean rank of zero-one matrices. In: Proceedings of 3rd Caribbean Conference on Combinatorics and Computing, pp. 169–173 (1981)

    Google Scholar 

  4. Chudnovsky, M., Robertson, N., Seymour, P., Thomas, R.: The strong perfect graph theorem. Ann. Math. 164, 51–229 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cunningham, W.H., Edmonds, J.: A combinatorial decomposition theory. Can. J. Math. 32(3), 734–765 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dawande, M.: A notion of cross-perfect bipartite graphs. Inf. Process. Lett. 88(4), 143–147 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Annals of Discrete Mathematics, 2nd edn, vol. 57. Elsevier (2004)

    Google Scholar 

  8. Gregory, D.A., Pullman, N.J.: Semiring rank: Boolean rank and nonnegative rank factorisations. J. Comb. Inf. Syst. Sci. 8(3), 223–233 (1983)

    MATH  Google Scholar 

  9. Győri, E.: A minimax theorem on intervals. J. Comb. Theory. Ser. B 37(1), 1–9 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kim, K.: Boolean matrix theory and applications. In: Monographs and Textbooks in Pure and Applied Mathematics. Dekker (1982)

    Google Scholar 

  11. Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge University Press, New York (1997)

    MATH  Google Scholar 

  12. Lubiw, A.: Doubly lexical orderings of matrices. SIAM J. Comput. 16(5), 854–879 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lubiw, A.: The Boolean basis problem and how to cover some polygons by rectangles. SIAM J. Discrete Math. 3(1), 98–115 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  14. Müller, H.: Alternating cycle-free matchings. Order 7(1), 11–21 (1990). https://doi.org/10.1007/BF00383169

    Article  MathSciNet  MATH  Google Scholar 

  15. Müller, H.: On edge perfectness and classes of bipartite graphs. Discrete Math. 149(1), 159–187 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  16. Orlin, J.: Contentment in graph theory: covering graphs with cliques. Indag. Math. (Proc.) 80(5), 406–424 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  17. Pulleyblank, W.: Alternating cycle free matchings. Technical report, CORR 82-18, Department of Combinatorics and Optimization, University of Waterloo (1982)

    Google Scholar 

Download references

Acknowledgements

I am very grateful to Ahmad Abdi for helping me begin studying firm matrices and for all the invaluable comments during our discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Réka Ágnes Kovács .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kovács, R.Á. (2022). On Minimally Non-firm Binary Matrices. In: Ljubić, I., Barahona, F., Dey, S.S., Mahjoub, A.R. (eds) Combinatorial Optimization. ISCO 2022. Lecture Notes in Computer Science, vol 13526. Springer, Cham. https://doi.org/10.1007/978-3-031-18530-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-18530-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-18529-8

  • Online ISBN: 978-3-031-18530-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics