Skip to main content

Coupled Finite and Boundary Element Methods in Fluid-Structure Interaction Problems for Power Machine Units

  • Conference paper
  • First Online:
Advances in Mechanical and Power Engineering (CAMPE 2021)

Abstract

New computational techniques are developed to study fluid-structure interaction problems for elements of the structure. The approach is based on coupled finite and boundary element methods involving hypersingular integral equations. Thin shells and plates are considered as structural elements interacting with ideal and incompressible liquids. The fundamental relations of the continuous mechanics are incorporated to describe the motion of structural elements and fluid. The fluid motion is supposed to be irrotational. The Laplace equation with respect to the liquid pressure on the wetted surfaces of the structural elements is obtained, and the corresponding boundary conditions for unilateral and bilateral contact of the structural element with the liquid are formulated. A hypersingular integral equation is obtained for bilateral contact of the structural element with liquid. The finite element method coupled with the boundary element method for the hypersingular integral equation is implemented to find the fluid pressure on the plate. The frequencies and modes of structure vibrations taking into account the added masses of the liquid are obtained. The accuracy and reliability of the proposed method are ascertained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Misura, S., Smetankina, N., Misiura, I.: Optimal design of the cyclically symmetrical structure under static load. In: Nechyporuk, M., Pavlikov, V., Kritskiy, D. (eds.) ICTM 2020. LNNS, vol. 188, pp. 256–266. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-66717-7_21

    Chapter  Google Scholar 

  2. Strelnikova, E., Kriutchenko, D., Gnitko, V., Degtyarev, K.: Nonlinear sloshing analysis for shells of revolution under longitudinal excitations. Eng. Anal. Bound. Elem. 111, 78–87 (2020). https://doi.org/10.1016/j.enganabound.2019.10.008

    Article  MathSciNet  MATH  Google Scholar 

  3. Strelnikova, E., Choudhary, N., Kriutchenko, D., Gnitko, V., Tonkonozhenko, A.: Liquid vibrations in circular cylindrical tanks with and without baffles under horizontal and vertical excitations. Eng. Anal. Bound. Elem. 120, 13–27 (2020). https://doi.org/10.1016/j.enganabound.2020.07.024

    Article  MathSciNet  MATH  Google Scholar 

  4. Karaiev, A., Strelnikova, E.: Singular integrals in axisymmetric problems of elastostatics. Int. J. Model. Simul. Sci. Comput. 11(1), 2050003 (2020). https://doi.org/10.1142/S1793962320500038

  5. Behshad, A., Shekari, M.: A boundary element study for evaluation of the effects of the rigid baffles on liquid sloshing in rigid containers. Int. J. Marit. Technol. 10, 45–54 (2018). https://doi.org/10.29252/ijmt.10.45

  6. Rusanov, A., Shubenko, A., Senetskyi, O., Babenko, O., Rusanov, R.: Healting modes and design optimization of cogeneration steam turbines of powerful units of combined heat and power plant. Energetika 65(1), 39–50 (2019). https://doi.org/10.6001/energetika.v65i1.3974

    Article  Google Scholar 

  7. Atroshenko, O., Tkachuk, M., Martynenko, O., Saverska, M., Hrechka, I., Khovanskyi, S.: The study of multicomponent loading effect on thin-walled structures with bolted connections. East.-Eur. J. Enterp. Technol. 1(7), 15–25 (2019). https://doi.org/10.15587/1729-4061.2019.154378

  8. Peczkis, G., Wiśniewski, P., Zahorulko, A.: Experimental and numerical studies on the influence of blade number in a small water turbine. Energies 14(9), 1–15 (2021). https://doi.org/10.3390/en14092604

    Article  Google Scholar 

  9. Tarfaoui, M., Nachtane, M., Khadimallah, H., Saifaoui, D.: Simulation of mechanical behavior and damage of a large composite wind turbine blade under critical loads. Appl. Compos. Mater. 25(2), 237–254 (2017). https://doi.org/10.1007/s10443-017-9612-x

    Article  Google Scholar 

  10. Navadeh, N., Goroshko, I., Zhuk, Y., Moghadam, F., Fallah, A.: Finite element analysis of wind turbine blade vibrations. Vibration 4(2), 310–322 (2021). https://doi.org/10.3390/vibration4020020

    Article  Google Scholar 

  11. Iemma, U., Vitagliano, F.P., Centracchio, F.: A multi-objective design optimization of eco-friendly aircraft: the impact of noise fees on airplanes sustainable development. Int. J. Sustain. Eng. 11, 122–134 (2018). https://doi.org/10.1080/19397038.2017.1420109

    Article  Google Scholar 

  12. Griffith, B., Patankar, N.: Immersed methods for fluid-structure interaction. Ann. Rev. Fluid Mech. 52, 421–448 (2020). https://doi.org/10.1146/annurev-fluid-010719-06022

    Article  MATH  Google Scholar 

  13. Gnitko, V., Degtyariov, K., Karaiev, A., Strelnikova, E.: Multi-domain boundary element method for axisymmetric problems in potential theory and linear isotropic elasticity. WIT Trans. Eng. Sci. 122, 13–25 (2019). https://doi.org/10.2495/BE410021

    Article  MathSciNet  MATH  Google Scholar 

  14. Shabana, A.: Computational Continuum Mechanics. Springer, Berlin (2020)

    MATH  Google Scholar 

  15. Brebbia, C.: The birth of the boundary element method from conception to application. Eng. Anal. Bound. Elem. 77, iii–x (2017). https://doi.org/10.1016/j.enganabound.2016.12.001

    Article  MathSciNet  MATH  Google Scholar 

  16. Naumenko, K., Altenbach, H.: Plates and shells. In: Modeling High Temperature Materials Behavior for Structural Analysis. STRUCTMAT, vol. 112, pp. 169–206. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20381-8_5

  17. Karaiev, A., Strelnikova, E.: Axisymmetric polyharmonic spline approximation in the dual reciprocity method. Z. Angew. Math. Mech. 101, e201800339 (2021). https://doi.org/10.1002/zamm.201800339

    Article  MathSciNet  Google Scholar 

  18. Sardjono, J.A., Darmawan, S., Tanujaya, H.: IOP Conf. Ser.: Mater. Sci. Eng. 1007(1) (2020). Art. no. 012035. https://doi.org/10.1088/1757-899X/1007/1/012035

  19. Ghenaiet, A., Bakour, M.: Simulation of steady and unsteady flows through a small-size Kaplan turbine. Eng. Rep. 2(2), e12112 (2020). https://doi.org/10.1002/eng2.12112

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank our foreign collaborator, Professor Alexander Cheng, University of Mississippi, USA, for his constant support and interest in our research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasyl Gnitko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gnitko, V., Martynenko, O., Vierushkin, I., Kononenko, Y., Degtyarev, K. (2023). Coupled Finite and Boundary Element Methods in Fluid-Structure Interaction Problems for Power Machine Units. In: Altenbach, H., et al. Advances in Mechanical and Power Engineering . CAMPE 2021. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-18487-1_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-18487-1_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-18486-4

  • Online ISBN: 978-3-031-18487-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics