Skip to main content

Numerical Simulations of Mixture Formation to Ensuring the Quality of Thermal Deburring

  • Conference paper
  • First Online:
Advances in Mechanical and Power Engineering (CAMPE 2021)

Abstract

The paper refers to the issues of ensuring the quality of Thermal Energy Method (TEM) processing of complex-shaped parts. The required energy of TEM processing depends on the accuracy of the fuel mixture, bearing in mind its component composition, stability and homogeneity. To gain further insight into mixture formation near structural elements of complex-shaped parts a sphere with blind holes having different length-to-diameter ratios were considered. To investigate the effect of the mixture formation in the chamber a numerical simulation for two strategies of filling was conducted, particularly a sequential filling of the chamber with the mixture components and filling the chamber with a prepared mixture of a given composition. A criterion based on the fuel mass fraction distribution was used to assess the quality of the fuel mixture with the possibility of the quality assessment in the individual subareas. The state of the mixture while mutual diffusion of its components and mixing with the residual velocity of gas movement was simulated and the required value of the holding time was determined. Obtained results show that the heterogeneity of the fuel mixture effects significantly the distribution and magnitude of the acting heat fluxes. It is proved that to ensure the degree of the mixture homogeneity required for accurate TEM processing, it is preferable to fill the chamber with the prepared mixture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schellekens, P., et al.: Design for precision: current status and trends. CIRP Ann. 47(2), 557–586 (1998). https://doi.org/10.1016/S0007-8506(07)63243-0

    Article  MathSciNet  Google Scholar 

  2. Pavlenko, D., Dvirnyk, Y., Przysowa, R.: Advanced materials and technologies for compressor blades of small turbofan engines. Aerospace 8(1), 1 (2021). https://doi.org/10.3390/aerospace8010001

    Article  Google Scholar 

  3. Vambol, O., Kondratiev, A., Purhina, S., Shevtsova, M.: Determining the parameters for a 3D-printing process using the fused deposition modeling in order to manufacture an article with the required structural parameters. Eastern-European Journal of Enterprise Technologies 2(1–110), 70–80 (2021). https://doi.org/10.15587/1729-4061.2021.227075

  4. Petare, A.C., Jain, N.K.: A critical review of past research and advances in abrasive flow finishing process. The Int. J. Adva. Manuf. Technol. 97(1–4), 741–782 (2018). https://doi.org/10.1007/s00170-018-1928-7

    Article  Google Scholar 

  5. Fuchs, F.J.: Ultrasonic cleaning and washing of surfaces. In: Gallego-Juárez, J.A., Graff, K.F. (eds.) Power Ultrasonics: Applications of High-Intensity Ultrasound, pp. 577–609. Woodhead Publishing, Cambridge (2015). https://doi.org/10.1016/B978-1-78242-028-6.00019-3

  6. Zhong, Z.-W.: Advanced polishing, grinding and finishing processes for various manufacturing applications: A review. Mater. Manuf. Processes 35(12), 1279–1303 (2020). https://doi.org/10.1080/10426914.2020.1772481

    Article  Google Scholar 

  7. Ruszaj, A., Gawlik, J., Skoczypiec, S.: Electrochemical machining – special equipment and applications in aircraft industry. Management and Production Engineering Review 7(2), 34–41 (2016). https://doi.org/10.1515/mper-2016-0015

    Article  Google Scholar 

  8. Khafizov, I.I., Nurullin, I.G.: Improving the quality of surfaces of products obtained by electroerosion treatment. IOP Conference Series: Materials Science and Engineering 915(1), 012027 (2020). https://doi.org/10.1088/1757-899X/915/1/012027

    Article  Google Scholar 

  9. Cerwenka, G., et al.: In-depth characterization of the scanner-based selective laser deburring process. J. Laser Appl. 30(3), 032510 (2018). https://doi.org/10.2351/1.5040642

    Article  Google Scholar 

  10. Korohodskyi, V., et al.: Determining the characteristics for the rational adjusting of an fuel-air mixture composition in a two-stroke engine with internal carburation. Eastern-European Journal of Enterprise Technologies 2(5–104), 39–52 (2020). https://doi.org/10.15587/1729-4061.2020.200766

  11. Plankovskyy, S., et al.: Simulation of surface heating for arbitrary shape’s moving bodies/sources by using R-functions. Acta Polytechnica 56(6), 472–477 (2016). https://doi.org/10.14311/AP.2016.56.0472

  12. Gillespie, L.K.: Deburring and edge finishing handbook. Society of Manufacturing Engineers, Dearborn (1999)

    Google Scholar 

  13. Struckmann, J., Kieser, A.: Thermal Deburring. ATL Anlagentechnik Luhden GmbH (2020)

    Google Scholar 

  14. Fritz, A., et al.: Experimental analysis of thermal energy deburring process by design of experiment. In: Proceedings of the ASME 2012 International Mechanical Engineering Congress and Exposition, vol. 3, pp. 2035–2041. ASME, New York (2012). https://doi.org/10.1115/IMECE2012-88411

  15. Jin, S.Y., Pramanik, A., Basak, A.K., Prakash, C., Shankar, S., Debnath, S.: Burr formation and its treatments—a review. The International Journal of Advanced Manufacturing Technology 107(5–6), 2189–2210 (2020). https://doi.org/10.1007/s00170-020-05203-2

    Article  Google Scholar 

  16. Sibanda, P.S., Carr, P., Ryan, M., Bigot, S.: State of the art in surface finish of metal additive manufactured parts. In: Jin, Y., Price, M. (eds.) Advances in Manufacturing Technology XXXIII, Advances in Transdisciplinary Engineering, vol. 9, pp. 221–225. IOS Press, Amsterdam (2019). https://doi.org/10.3233/ATDE190039

  17. Lamikiz, A., Ukar, E., Tabernero, I., Martinez, S.: Thermal advanced machining processes. In: Davim, J.P. (eds.) Modern Machining Technology, pp. 335–372. Woodhead Publishing, Oxford (2011). https://doi.org/10.1533/9780857094940.335

  18. Plankovskyy, S., et al.: Advanced thermal energy method for finishing precision parts. In: Gupta, K., Pramanik, A. (eds.) Advanced Machining and Finishing, pp. 527–575. Elsevier, Amsterdam (2021). https://doi.org/10.1016/B978-0-12-817452-4.00014-2

  19. Plankovskyy, S., Shypul, O., Tsegelnyk, Y., Pankratov, A., Romanova, T.: Amplification of Heat Transfer by Shock Waves for Thermal Energy Method. In: Nechyporuk, M., Pavlikov, V., Kritskiy, D. (eds.) ICTM 2020. LNNS, vol. 188, pp. 577–587. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-66717-7_49

    Chapter  MATH  Google Scholar 

  20. Plankovskyy, S., et al.: Determination of detonable gas mixture heat fluxes at thermal deburring. Acta Polytechnica 59(2), 162–169 (2019). https://doi.org/10.14311/AP.2019.59.0162

  21. Romanova, T., et al.: Sparsest packing of two-dimensional objects. Int. J. Prod. Res. 59(13), 3900–3915 (2021). https://doi.org/10.1080/00207543.2020.1755471

    Article  Google Scholar 

  22. Romanova, T., et al.: Sparsest balanced packing of irregular 3D objects in a cylindrical container. Eur. J. Oper. Res. 291(1), 84–100 (2021). https://doi.org/10.1016/j.ejor.2020.09.021

    Article  MathSciNet  MATH  Google Scholar 

  23. Plankovskyy, S., Shypul, O., Tsegelnyk, Y., Pankratov, A., Romanova, T., Litvinchev, I.: Circular Layout in Thermal Deburring. In: Shkarlet, S., Morozov, A., Palagin, A. (eds.) MODS 2020. AISC, vol. 1265, pp. 111–120. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-58124-4_11

    Chapter  MATH  Google Scholar 

  24. Arias-Zugasti, M., Garcia-Ybarra, P.L., Castillo, J.L.: Efficient calculation of multicomponent diffusion fluxes based on kinetic theory. Combust. Flame 163, 540–556 (2016). https://doi.org/10.1016/j.combustflame.2015.10.033

    Article  Google Scholar 

  25. Huang, H., et al.: Modeling and computation of turbulent slot jet impingement heat transfer using RANS method with special emphasis on the developed SST turbulence model. Int. J. Heat Mass Transf. 126, 589–602 (2018). https://doi.org/10.1016/j.ijheatmasstransfer.2018.05.121

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yevgen Tsegelnyk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Plankovskyy, S., Shypul, O., Tsegelnyk, Y., Zaklinskyy, S., Bezkorovaina, O. (2023). Numerical Simulations of Mixture Formation to Ensuring the Quality of Thermal Deburring. In: Altenbach, H., et al. Advances in Mechanical and Power Engineering . CAMPE 2021. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-18487-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-18487-1_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-18486-4

  • Online ISBN: 978-3-031-18487-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics