Skip to main content

Cognitive Performance and Neuromapping

  • Chapter
  • First Online:
Spaceflight and the Central Nervous System
  • 318 Accesses

Abstract

The spaceflight environment exposes crew members to a host of environmental and psychological stressors that can negatively affect cognitive performance. Over the past half century of human spaceflight, scientific focus has shifted from the acute neurophysiological adaptation to microgravity exposure toward long-term cognitive functioning of astronauts in response to the multi-stress environment of the upcoming exploration class missions. In this chapter, we will review the findings of spaceflight-related changes in cognition. We discuss the methods used to detect such changes and the ongoing efforts to identify underlying brain regions in both space and analog environments. We also examine the implications of cognitive impairment and challenges for future exploration missions, and what countermeasures could be implemented to maintain optimal cognitive performance in space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Slack KJ, Williams T, Schneiderman JS, Whitmire AM, Picano JJ. Evidence report: risk of adverse cognitive or behavioral conditions and psychiatric disorders. JSC-CN-35772. National Aeronautics and Space Administration, Lyndon B. Johnson Space Center: Houston, TX; 2016.

    Google Scholar 

  2. Welch RB, Hoover M, Southward EF. Cognitive performance during prismatic displacement as a partial analogue of “space fog”. Aviat Space Environ Med. 2009;80(9):771–80.

    Article  Google Scholar 

  3. Stuster J. Behavioral issues associated with long duration space expeditions: review and analysis of astronaut journals. NASA/TM-2016-218603. National Aeronautics and Space Administration, Lyndon B. Johnson Space Center: Houston, TX; 2016.

    Google Scholar 

  4. Palinkas LA, Suedfeld P. Psychosocial issues in isolated and confined extreme environments. Neurosci Biobehav Rev. 2021;126:413–29.

    Article  Google Scholar 

  5. Myasnikov VI, Stepanova SI, Salnitskiy VP, Kozerenko OP, Nechaev AP. Problems of psychic asthenization in prolonged space flight. Moscow: Slovo Press; 2000.

    Google Scholar 

  6. Kanas N, Salnitskiy V, Gushin V, Weiss DS, Grund EM, Flynn C, et al. Asthenia--does it exist in space? Psychosom Med. 2001;63(6):874–80.

    Article  CAS  Google Scholar 

  7. Strangman GE, Sipes W, Beven G. Human cognitive performance in spaceflight and analogue environments. Aviat Space Environ Med. 2014;85(10):1033–48.

    Article  Google Scholar 

  8. Patel ZS, Brunstetter TJ, Tarver WJ, Whitmire AM, Zwart SR, Smith SM, et al. Red risks for a journey to the red planet: the highest priority human health risks for a mission to Mars. NPJ Microgravity. 2020;6(1):33.

    Article  Google Scholar 

  9. Kubis JF, McLaughlin EJ, Jackson JM, Rusnak R, McBride GH, Saxon SV. Task and work performance on Skylab Missions 2, 3 and 4: time and motion study--experiment M151. In: Johnston RS, Dietlein LF, editors. Biomedical results from Skylab. Washington, DC: NASA Lyndon B. Johnson Space Center; 1977. p. 136–54.

    Google Scholar 

  10. Garriott OK, Doerre GL. Crew efficiency on first exposure to zero-gravity. In: Johnston RS, Dietlein LF, editors. Biomedical results from Skylab. Washington, DC: NASA Lyndon B. Johnson Space Center; 1977. p. 155–63.

    Google Scholar 

  11. Clément G, Ngo-Anh JT. Space physiology II: adaptation of the central nervous system to space flight--past, current, and future studies. Eur J Appl Physiol. 2013;113(7):1655–72.

    Article  Google Scholar 

  12. Bock O, Fowler B, Comfort D. Visual-motor coordination during spaceflight. In: Buckey Jr JC, Homick JL, editors. The Neurolab Spacelab Mission: neuroscience research in space Houston. TX: NASA; 2003. p. 83–90.

    Google Scholar 

  13. Schiflett SG, Eddy DR, Schlegel RE, Shehab RL. LMS-PAWS: Microgravity effects on standardized cognitive performance measures. Houston, TX: NASA Johnson Space Center; 1998.

    Google Scholar 

  14. Newman DJ, Lathan CE. Memory processes and motor control in extreme environments. IEEE Trans Syst Man Cybern C Appl Rev. 1999;29(3):387–94.

    Article  CAS  Google Scholar 

  15. Tafforin C, Lambin M. Preliminary analysis of sensory disturbances and behavioral modifications of astronauts in space. Aviat Space Environ Med. 1993;64(2):146–52.

    CAS  Google Scholar 

  16. Eddy DR, Schiflett SG, Schlegel RE, Shehab RL. Cognitive performance aboard the life and microgravity spacelab. Acta Astronaut. 1998;43(3-6):193–210.

    Article  CAS  Google Scholar 

  17. Moore ST, Dilda V, Morris TR, Yungher DA, MacDougall HG, Wood SJ. Long-duration spaceflight adversely affects post-landing operator proficiency. Sci Rep. 2019;9(1):2677.

    Article  Google Scholar 

  18. Garrett-Bakelman FE, Darshi M, Green SJ, Gur RC, Lin L, Macias BR, et al. The NASA twins study: a multidimensional analysis of a year-long human spaceflight. Science. 2019;364(6436).

    Google Scholar 

  19. Tays GD, Hupfeld KE, McGregor HR, Salazar AP, De Dios YE, Beltran NE, et al. The effects of long duration spaceflight on sensorimotor control and cognition. Front Neural Circ 2021;15(110).

    Google Scholar 

  20. Koppelmans V, Erdeniz B, De Dios YE, Wood SJ, Reuter-Lorenz PA, Kofman I, et al. Study protocol to examine the effects of spaceflight and a spaceflight analog on neurocognitive performance: extent, longevity, and neural bases. BMC Neurol. 2013;13:205.

    Article  Google Scholar 

  21. Demertzi A, Van Ombergen A, Tomilovskaya E, Jeurissen B, Pechenkova E, Di Perri C, et al. Cortical reorganization in an astronaut’s brain after long-duration spaceflight. Brain Struct Funct. 2016;221(5):2873–6.

    Article  Google Scholar 

  22. Roberts DR, Asemani D, Nietert PJ, Eckert MA, Inglesby DC, Bloomberg JJ, et al. Prolonged microgravity affects human brain structure and function. AJNR Am J Neuroradiol. 2019;40(11):1878–85.

    CAS  Google Scholar 

  23. Takács E, Barkaszi I, Czigler I, Pató LG, Altbäcker A, McIntyre J, et al. Persistent deterioration of visuospatial performance in spaceflight. Sci Rep. 2021;11(1):9590.

    Article  Google Scholar 

  24. Stahn AC, Kühn S. Extreme environments for understanding brain and cognition. Trends Cogn Sci. 2021.

    Google Scholar 

  25. Hanna TD, Gaito J. Performance and habitability aspects of extended confinement in sealed cabins. Aerosp Med. 1960;31:399–406.

    CAS  Google Scholar 

  26. Rizzolatti G, Peru A. European isolation and confinement study. Attention during isolation and confinement. Adv Space Biol Med. 1993;3:151–62.

    Article  CAS  Google Scholar 

  27. Sauer J, Hockey GR, Wastell DG. Maintenance of complex performance during a 135-day spaceflight simulation. Aviat Space Environ Med. 1999;70(3 Pt 1):236–44.

    CAS  Google Scholar 

  28. Basner M, Dinges DF, Mollicone DJ, Savelev I, Ecker AJ, Di Antonio A, et al. Psychological and behavioral changes during confinement in a 520-day simulated interplanetary mission to mars. PLoS One. 2014;9(3):e93298.

    Article  Google Scholar 

  29. Johannes B, Bronnikov SV, Bubeev JA, Dudukin A, Hoermann HJ, Frett T, et al. A tool to facilitate learning in a complex manual control task. Int J Appl Psychol. 2017;7(4):79–85.

    Google Scholar 

  30. Nasrini J, Hermosillo E, Dinges DF, Moore TM, Gur RC, Basner M. Cognitive performance during confinement and sleep restriction in NASA’s human exploration research analog (HERA). Front Physiol. 2020;11:394.

    Article  Google Scholar 

  31. White KG, Taylor AJW, McCormick IA. A note on the chronometric analysis of cognitive ability: Antarctic effects. New Zealand J Psychol. 1983;12:36–40.

    Google Scholar 

  32. Reed HL, Reedy KR, Palinkas LA, Van Do N, Finney NS, Case HS, et al. Impairment in cognitive and exercise performance during prolonged Antarctic residence: effect of thyroxine supplementation in the polar triiodothyronine syndrome. J Clin Endocrinol Metab. 2001;86(1):110–6.

    CAS  Google Scholar 

  33. John Paul FU, Mandal MK, Ramachandran K, Panwar MR. Cognitive performance during long-term residence in a polar environment. J Environ Psychol. 2010;30(1):129–32.

    Article  Google Scholar 

  34. Palinkas LA, Reedy KR, Shepanek M, Reeves D, Samuel Case H, Van Do N, et al. A randomized placebo-controlled clinical trial of the effectiveness of thyroxine and triiodothyronine and short-term exposure to bright light in prevention of decrements in cognitive performance and mood during prolonged Antarctic residence. Clin Endocrinol (Oxf). 2010;72(4):543–50.

    Article  CAS  Google Scholar 

  35. Stahn AC, Gunga HC, Kohlberg E, Gallinat J, Dinges DF, Kühn S. Brain changes in response to long Antarctic expeditions. N Engl J Med. 2019;381(23):2273–5.

    Article  Google Scholar 

  36. Bosch Bruguera M, Fink A, Schröder V, López Bermúdez S, Dessy E, van den Berg FP, et al. Assessment of the effects of isolation, confinement and hypoxia on spaceflight piloting performance for future space missions - The SIMSKILL experiment in Antarctica. Acta Astronautica. 2021;179:471–83.

    Article  Google Scholar 

  37. Lipnicki DM, Gunga HC. Physical inactivity and cognitive functioning: results from bed rest studies. Eur J Appl Physiol. 2009;105(1):27–35.

    Article  Google Scholar 

  38. Yuan P, Koppelmans V, Reuter-Lorenz PA, De Dios YE, Gadd NE, Wood SJ, et al. Increased brain activation for dual tasking with 70-days head-down bed rest. Front Syst Neurosci. 2016;10:71.

    Article  Google Scholar 

  39. Basner M, Stahn AC, Nasrini J, Dinges DF, Moore TM, Gur RC, et al. Effects of head-down tilt bed rest plus elevated CO(2) on cognitive performance. J Appl Physiol (1985). 2021;130(4):1235–46.

    Article  Google Scholar 

  40. Cucinotta FA, Cacao E. Predictions of cognitive detriments from galactic cosmic ray exposures to astronauts on exploration missions. Life Sci Space Res (Amst). 2020;25:129–35.

    Article  Google Scholar 

  41. Mhatre SD, Iyer J, Puukila S, Paul AM, Tahimic CGT, Rubinstein L, et al. Neuro-consequences of the spaceflight environment. Neurosci Biobehav Rev. 2021.

    Google Scholar 

  42. AGARD. Human performance assessment methods (AGARDograph No. 308). Neuilly Sur Seine, France: North Atlantic Treaty Organization; 1989.

    Google Scholar 

  43. Kane RL, Short P, Sipes W, Flynn CF. Development and validation of the spaceflight cognitive assessment tool for windows (WinSCAT). Aviat Space Environ Med. 2005;76(6 Suppl):B183–91.

    Google Scholar 

  44. Basner M, Savitt A, Moore TM, Port AM, McGuire S, Ecker AJ, et al. Development and validation of the cognition test battery for spaceflight. Aerosp Med Hum Perform. 2015;86(11):942–52.

    Article  Google Scholar 

  45. Gur RC, Richard J, Hughett P, Calkins ME, Macy L, Bilker WB, et al. A cognitive neuroscience-based computerized battery for efficient measurement of individual differences: standardization and initial construct validation. J Neurosci Methods. 2010;187(2):254–62.

    Article  Google Scholar 

  46. Roalf DR, Ruparel K, Gur RE, Bilker W, Gerraty R, Elliott MA, et al. Neuroimaging predictors of cognitive performance across a standardized neurocognitive battery. Neuropsychology. 2014;28(2):161–76.

    Article  Google Scholar 

  47. Casario K, Howard K, Cordoza M, Hermosillo E, Ibrahim L, Larson O, et al. Acceptability of the cognition test battery in astronaut and astronaut-surrogate populations. Acta Astronautica. 2022;190:14–23.

    Article  CAS  Google Scholar 

  48. Basner M, Moore TM, Hermosillo E, Nasrini J, Dinges DF, Gur RC, et al. Cognition test battery performance is associated with simulated 6df spacecraft docking performance. Aerosp Med Hum Perform. 2020;91(11):861–7.

    Article  Google Scholar 

  49. Johannes B, Salnitski V, Dudukin A, Shevchenko L, Bronnikov S. Performance assessment in the PILOT experiment on board space stations Mir and ISS. Aerosp Med Hum Perform. 2016;87(6):534–44.

    Article  Google Scholar 

  50. Johannes B, Bronnikov SV, Bubeev JA, Kotrovskaya TI, Shastlivtseva DV, Piechowski S, et al. Operational and experimental tasks, performance, and voice in space. Aerosp Med Hum Perform. 2019;90(7):624–31.

    Article  Google Scholar 

  51. Ivkovic V, Sommers B, Cefaratti DA, Newman G, Thomas DW, Alexander DG, et al. Operationally relevant behavior assessment using the robotic on-board trainer for research (ROBoT-r). Aerosp Med Hum Perform. 2019;90(9):819–25.

    Article  Google Scholar 

  52. Sauer J. CAMS as a tool for human factors research in spaceflight. Acta Astronaut. 2004;54(2):127–32.

    Article  Google Scholar 

  53. Hockey GR, Wiethoff M. European isolation and confinement study. Cognitive fatigue in complex decision-making. Adv Space Biol Med. 1993;3:139–50.

    Article  CAS  Google Scholar 

  54. Hockey GR, Sauer J. Cognitive fatigue and complex decision making under prolonged isolation and confinement. Adv Space Biol Med. 1996;5:309–30.

    Article  CAS  Google Scholar 

  55. Reschke MF, Bloomberg JJ, Harm DL, Paloski WH, Layne C, McDonald V. Posture, locomotion, spatial orientation, and motion sickness as a function of space flight. Brain Res Brain Res Rev. 1998;28(1-2, 102):–17.

    Google Scholar 

  56. Clément GR, Boyle RD, George KA, Nelson GA, Reschke MF, Williams TJ, et al. Challenges to the central nervous system during human spaceflight missions to Mars. J Neurophysiol. 2020;123(5):2037–63.

    Article  Google Scholar 

  57. Manzey D, Lorenz B, Schiewe A, Finell G, Thiele G. Dual-task performance in space: results from a single-case study during a short-term space mission. Hum Fac. 1995;37(4):667–81.

    Article  CAS  Google Scholar 

  58. Schiflett SG, Eddy DR, Schlegel RE, French J, Shehab RL. Astronaut performance during preflight, in-orbit and recovery. 66th Annual Meeting of the Aerospace Medical Association. Anaheim, CA: Aerospace Medical Association; 1995. p. #503.

    Google Scholar 

  59. Ratino DA, Repperger DW, Goodyear C, Potor G, Rodriguez LE. Quantification of reaction time and time perception during Space Shuttle operations. Aviat Space Environ Med. 1988;59(3):220–4.

    CAS  Google Scholar 

  60. Clement G, Berthoz A, Lestienne F. Adaptive changes in perception of body orientation and mental image rotation in microgravity. Aviat Space Environ Med. 1987;58(9 Pt 2):A159–63.

    CAS  Google Scholar 

  61. Ross HE, Schwartz E, Emmerson P. The nature of sensorimotor adaptation to altered G-levels: evidence from mass discrimination. Aviat Space Environ Med. 1987;58(9 Pt 2):A148–52.

    CAS  Google Scholar 

  62. Reschke MF, Clément G. Vestibular and sensorimotor dysfunction during space flight. Curr Pathobiol Rep. 2018;6(3):177–83.

    Article  CAS  Google Scholar 

  63. de Schonen S, Leone G, Lipshits M. The face inversion effect in microgravity: is gravity used as a spatial reference for complex object recognition? Acta Astronaut. 1998;42(1-8):287–301.

    Article  Google Scholar 

  64. Kelly TH, Hienz RD, Zarcone TJ, Wurster RM, Brady JV. Crewmember performance before, during, and after spaceflight. J Exp Anal Behav. 2005;84(2):227–41.

    Article  Google Scholar 

  65. Benke T, Koserenko O, Watson NV, Gerstenbrand F. Space and cognition: the measurement of behavioral functions during a 6-day space mission. Aviat Space Environ Med. 1993;64(5):376–9.

    CAS  Google Scholar 

  66. Manzey D, Lorenz TB, Heuers H, Sangals J. Impairments of manual tracking performance during spaceflight: more converging evidence from a 20-day space mission. Ergonomics. 2000;43(5):589–609.

    Article  CAS  Google Scholar 

  67. Fowler B, Bock O, Comfort D. Is dual-task performance necessarily impaired in space? Hum Factors. 2000;42(2):318–26.

    Article  CAS  Google Scholar 

  68. Stahn AC, Riemer M, Wolbers T, Werner A, Brauns K, Besnard S, et al. Spatial updating depends on gravity. Front Neural Circuits. 2020;14:20.

    Article  Google Scholar 

  69. Stahn AC, Kühn S. Brains in space: the importance of understanding the impact of long-duration spaceflight on spatial cognition and its neural circuitry. Cogn Process. 2021;22(Suppl 1):105–14.

    Article  Google Scholar 

  70. Manzey D, Lorenz B, Poljakov V. Mental performance in extreme environments: results from a performance monitoring study during a 438-day spaceflight. Ergonomics. 1998;41(4):537–59.

    Article  CAS  Google Scholar 

  71. Fowler B, Meehan S, Singhal A. Perceptual-motor performance and associated kinematics in space. Hum Factors. 2008;50(6):879–92.

    Article  Google Scholar 

  72. Pattyn N, Migeotte PF, Morais J, Soetens E, Cluydts R, Kolinsky R. Crew performance monitoring: putting some feeling into it. Acta Astronautica. 2009;65(3):325–9.

    Article  Google Scholar 

  73. Clément G, Skinner A, Richard G, Lathan C. Geometric illusions in astronauts during long-duration spaceflight. Neuroreport. 2012;23(15):894–9.

    Article  Google Scholar 

  74. Clément G, Skinner A, Lathan C. Distance and size perception in astronauts during long-duration spaceflight. Life (Basel). 2013;3(4):524–37.

    Google Scholar 

  75. Semjen A, Leone G, Lipshits M. Motor timing under microgravity. Acta Astronaut. 1998;42(1-8):303–21.

    Article  CAS  Google Scholar 

  76. Berger M, Mescheriakov S, Molokanova E, Lechner-Steinleitner S, Seguer N, Kozlovskaya I. Pointing arm movements in short- and long-term spaceflights. Aviat Space Environ Med. 1997;68(9):781–7.

    CAS  Google Scholar 

  77. Bock O, Weigelt C, Bloomberg JJ. Cognitive demand of human sensorimotor performance during an extended space mission: a dual-task study. Aviat Space Environ Med. 2010;81(9):819–24.

    Article  Google Scholar 

  78. McIntyre J, Lipshits M, Zaoui M, Berthoz A, Gurfinkel V. Internal reference frames for representation and storage of visual information: the role of gravity. Acta Astronaut. 2001;49(3-10):111–21.

    Article  CAS  Google Scholar 

  79. Ventsenostev BB. Psychophysiological studies of workers in the Antarctic. In: Matusov AL, editor. Medical research on Arctic and Antarctic expeditions. Jerusalem: Israël Programme for Scientific Translations; 1973.

    Google Scholar 

  80. Defayolle M, Boutelier C, Bachelard C, Rivolier J, Taylor AJ. The stability of psychometric performance during the International Biomedical Expedition to the Antarctic (IBEA). J Human Stress. 1985;11(4):157–60.

    Article  CAS  Google Scholar 

  81. Le Scanff C, Larue J, Rosnet E. How to measure human adaptation in extreme environments: the case of Antarctic wintering-over. Aviat Space Environ Med. 1997;68(12):1144–9.

    Google Scholar 

  82. Smith S. Studies of small groups in confinement. In: Zubek JP, editor. Sensory deprivation: fifteen years of research. New York, NY: Appleton-Century-Crofts; 1969. p. 374–406.

    Google Scholar 

  83. Gushin VI, Kholin SF, Ivanovsky YR. Soviet psychophysiological investigations of simulated isolation: some results and prospects. Adv Space Biol Med. 1993;3:5–14.

    Article  CAS  Google Scholar 

  84. Lorenz B, Lorenz J, Manzey D. Performance and brain electrical activity during prolonged confinement. Adv Space Biol Med. 1996;5:157–81.

    Article  CAS  Google Scholar 

  85. Gustafsson C, Gennser M, Ornhagen H, Derefeldt G. Effects of normobaric hypoxic confinement on visual and motor performance. Aviat Space Environ Med. 1997;68(11):985–92.

    CAS  Google Scholar 

  86. Tortello C, Agostino PV, Folgueira A, Barbarito M, Cuiuli JM, Coll M, et al. Subjective time estimation in Antarctica: the impact of extreme environments and isolation on a time production task. Neurosci Lett. 2020;725:134893.

    Article  CAS  Google Scholar 

  87. Basner M, Dinges DF, Howard K, Moore TM, Gur RC, Mühl C, et al. Continuous and intermittent artificial gravity as a countermeasure to the cognitive effects of 60 days of head-down tilt bed rest. Front Physiol. 2021;12:643854.

    Article  Google Scholar 

  88. Koppelmans V, Mulavara AP, Yuan P, Cassady KE, Cooke KA, Wood SJ, et al. Exercise as potential countermeasure for the effects of 70 days of bed rest on cognitive and sensorimotor performance. Front Syst Neurosci. 2015;9:121.

    Article  Google Scholar 

  89. Lee JK, De Dios Y, Kofman I, Mulavara AP, Bloomberg JJ, Seidler RD. Head down tilt bed rest plus elevated CO(2) as a spaceflight analog: effects on cognitive and sensorimotor performance. Front Hum Neurosci. 2019;13:355.

    Article  CAS  Google Scholar 

  90. Roberts DR, Zhu X, Tabesh A, Duffy EW, Ramsey DA, Brown TR. Structural brain changes following long-term 6° head-down tilt bed rest as an analog for spaceflight. AJNR Am J Neuroradiol. 2015;36(11):2048–54.

    Article  CAS  Google Scholar 

  91. Lee JK, Koppelmans V, Riascos RF, Hasan KM, Pasternak O, Mulavara AP, et al. Spaceflight-associated brain white matter microstructural changes and intracranial fluid redistribution. JAMA Neurol. 2019;76(4):412–9.

    Article  Google Scholar 

  92. Leone G, Lipshits M, Gurfinkel V, Berthoz A. Is there an effect of weightlessness on mental rotation of three-dimensional objects? Brain Res Cogn Brain Res. 1995;2(4):255–67.

    Article  CAS  Google Scholar 

  93. Gemignani A, Piarulli A, Menicucci D, Laurino M, Rota G, Mastorci F, et al. How stressful are 105 days of isolation? Sleep EEG patterns and tonic cortisol in healthy volunteers simulating manned flight to Mars. Int J Psychophysiol. 2014;93(2):211–9.

    Article  Google Scholar 

  94. Pavy Le-Traon A, Rous De Feneyrols A, Cornac A, Abdeseelam R, N’Uygen D, Lazerges M, et al. Psychomotor performance during a 28 day head-down tilt with and without lower body negative pressure. Acta Astronaut. 1994;32(4):319–30.

    Article  CAS  Google Scholar 

  95. Barabasz AF, Gregson RAM, Mullin CS. Questionable chronometry: does Antarctic isolation produce cognitive slowing? 1984.

    Google Scholar 

  96. McCormick IA, Taylor AJ, Rivolier J, Cazes G. A psychometric study of stress and coping during the International Biomedical Expedition to the Antarctic (IBEA). J Human Stress. 1985;11(4):150–6.

    Article  CAS  Google Scholar 

  97. Taylor AJW. The research program of the International Biomedical Expedition to the Antarctic (IBEA) and its implications for research in outer space. In: Harrison AA, Clearwater YA, McKay CP, editors. From Antarctica to outer space: life in isolation and confinement. New York, NY: Springer; 1991. p. 43–56.

    Chapter  Google Scholar 

  98. Mullin CS Jr. Some psychological aspects of isolated Antarctic living. Am J Psychiatry. 1960;117:323–5.

    Article  Google Scholar 

  99. Palinkas LA. Going to extremes: the cultural context of stress, illness and coping in Antarctica. Soc Sci Med. 1992;35(5):651–64.

    Article  CAS  Google Scholar 

  100. Vaernes RJ, Bergan T, Lindrup A, Hammerborg D, Warncke M. European isolation and confinement study. Mental performance. Adv Space Biol Med. 1993;3:121–37.

    CAS  Google Scholar 

  101. Weber J, Javelle F, Klein T, Foitschik T, Crucian B, Schneider S, et al. Neurophysiological, neuropsychological, and cognitive effects of 30 days of isolation. Exp Brain Res. 2019;237(6):1563–73.

    Article  Google Scholar 

  102. Salazar AP, Hupfeld KE, Lee JK, Beltran NE, Kofman IS, De Dios YE, et al. Neural working memory changes during a spaceflight analog with elevated carbon dioxide: a pilot study. Front Syst Neurosci. 2020;14:48.

    Article  CAS  Google Scholar 

  103. Premkumar M, Sable T, Dhanwal D, Dewan R. Circadian levels of serum melatonin and cortisol in relation to changes in mood, sleep, and neurocognitive performance, spanning a year of residence in Antarctica. Neurosci J. 2013;2013:254090.

    Article  Google Scholar 

  104. Abeln V, MacDonald-Nethercott E, Piacentini MF, Meeusen R, Kleinert J, Strueder HK, et al. Exercise in isolation--a countermeasure for electrocortical, mental and cognitive impairments. PLoS One. 2015;10(5):e0126356.

    Article  Google Scholar 

  105. Khandelwal SK, Bhatia A, Mishra AK. Psychological adaptation of Indian expeditioners during prolonged residence in Antarctica. Indian J Psychiatry. 2017;59(3):313–9.

    Article  Google Scholar 

  106. Palinkas LA, Reedy KR, Smith M, Anghel M, Steel GD, Reeves D, et al. Psychoneuroendocrine effects of combined thyroxine and triiodothyronine versus tyrosine during prolonged Antarctic residence. Int J Circumpolar Health. 2007;66(5):401–17.

    Article  Google Scholar 

  107. Connaboy C, Sinnott AM, LaGoy AD, Krajewski KT, Johnson CD, Pepping G-J, et al. Cognitive performance during prolonged periods in isolated, confined, and extreme environments. Acta Astronautica. 2020;177:545–51.

    Article  Google Scholar 

  108. Mammarella N. Towards the affective cognition approach to human performance in space. Aerosp Med Hum Perform. 2020;91(6):532–4.

    Article  Google Scholar 

  109. Palinkas LA, Reedy KR, Shepanek M, Smith M, Anghel M, Steel GD, et al. Environmental influences on hypothalamic-pituitary-thyroid function and behavior in Antarctica. Physiol Behav. 2007;92(5):790–9.

    Article  CAS  Google Scholar 

  110. Sauer J, Hockey GR, Wastell DG. Performance evaluation in analogue space environments: adaptation during an 8-month Antarctic wintering-over expedition. Aviat Space Environ Med. 1999;70(3 Pt 1):230–5.

    CAS  Google Scholar 

  111. Lipnicki DM, Gunga HC, Belavy DL, Felsenberg D. Decision making after 50 days of simulated weightlessness. Brain Res. 2009;1280:84–9.

    Article  CAS  Google Scholar 

  112. Obenaus A, Huang L, Smith A, Favre CJ, Nelson G, Kendall E. Magnetic resonance imaging and spectroscopy of the rat hippocampus 1 month after exposure to 56Fe-particle radiation. Radiat Res. 2008;169(2):149–61.

    Article  CAS  Google Scholar 

  113. Raber J, Allen AR, Sharma S, Allen B, Rosi S, Olsen RH, et al. Effects of proton and combined proton and (56)Fe radiation on the hippocampus. Radiat Res. 2016;185(1):20–30.

    Article  CAS  Google Scholar 

  114. Wingenfeld K, Wolf OT. Stress, memory, and the hippocampus. Front Neurol Neurosci. 2014;34:109–20.

    Article  Google Scholar 

  115. Li K, Guo X, Jin Z, Ouyang X, Zeng Y, Feng J, et al. Effect of simulated microgravity on human brain gray matter and white matter--evidence from MRI. PLoS One. 2015;10(8):e0135835.

    Article  Google Scholar 

  116. Cunha C, Brambilla R, Thomas KL. A simple role for BDNF in learning and memory? Front Mol Neurosci. 2010;3:1.

    Google Scholar 

  117. Popova NK, Kulikov AV, Naumenko VS. Spaceflight and brain plasticity: spaceflight effects on regional expression of neurotransmitter systems and neurotrophic factors encoding genes. Neurosci Biobehav Rev. 2020;119:396–405.

    Article  CAS  Google Scholar 

  118. Heuer H, Manzey D, Lorenz B, Sangals J. Impairments of manual tracking performance during spaceflight are associated with specific effects of microgravity on visuomotor transformations. Ergonomics. 2003;46(9):920–34.

    Article  Google Scholar 

  119. Treisman AM, Gelade G. A feature-integration theory of attention. Cogn Psychol. 1980;12(1):97–136.

    Article  CAS  Google Scholar 

  120. Vaernes R, Bergan T, Ursin H, Warncke M. The psychological effects of isolation on a space station: a simulation study. 22nd International Conference on Environmental Systems. SAW International, Seattle, WA. 1992. p. 1–12.

    Google Scholar 

  121. Mecklinger A, Friederici AD, Güssow T. Confinement affects the detection of low frequency events: an event-related potential analysis. J Psychophysiol. 1994;8(2):98–113.

    Google Scholar 

  122. Rodgin DW, Hartman BO. Study of man during a 56-day exposure to an oxygen-helium atmosphere at 258 mm. Hg total pressure. 13. Behavior factors. Aerosp Med. 1966;37(6):605–8.

    CAS  Google Scholar 

  123. Zubek JP. Sensory and perceptual-motor effects. In: P. ZJ, editor. Sensory deprivation: fifteen years of research. New York, NY: Appleton-Century-Crofts; 1969. p. 207–253.

    Google Scholar 

  124. Terelak J, Turlejski J, Szczechura J, Rozynski J, Cieciura M. Dynamics of simple arithmetic task performance under Antarctica isolation. Polish Psychophys Bull. 1985;16(2):123–8.

    Google Scholar 

  125. Mairesse O, MacDonald-Nethercott E, Neu D, Tellez HF, Dessy E, Neyt X, et al. Preparing for Mars: human sleep and performance during a 13 month stay in Antarctica. Sleep. 2019;42(1).

    Google Scholar 

  126. Barkaszi I, Takács E, Czigler I, Balázs L. Extreme environment effects on cognitive functions: a longitudinal study in high altitude in Antarctica. Front Hum Neurosci. 2016;10:331.

    Article  Google Scholar 

  127. Corneliussen JG, Leon GR, Kjærgaard A, Fink BA, Venables NC. Individual traits, personal values, and conflict resolution in an isolated, confined, extreme environment. Aerosp Med Hum Perform. 2017;88(6):535–43.

    Article  Google Scholar 

  128. Gríofa MO, Blue RS, Cohen KD, O'Keeffe DT. Sleep stability and cognitive function in an Arctic Martian analogue. Aviat Space Environ Med. 2011;82(4):434–41.

    Article  Google Scholar 

  129. Kiffer F, Boerma M, Allen A. Behavioral effects of space radiation: a comprehensive review of animal studies. Life Sci Space Res (Amst). 2019;21:1–21.

    Article  Google Scholar 

  130. Arnsten AF. Stress signalling pathways that impair prefrontal cortex structure and function. Nat Rev Neurosci. 2009;10(6):410–22.

    Article  CAS  Google Scholar 

  131. Rao LL, Zhou Y, Liang ZY, Rao H, Zheng R, Sun Y, et al. Decreasing ventromedial prefrontal cortex deactivation in risky decision making after simulated microgravity: effects of -6° head-down tilt bed rest. Front Behav Neurosci. 2014;8:187.

    Article  Google Scholar 

  132. Van Ombergen A, Jillings S, Jeurissen B, Tomilovskaya E, Rühl RM, Rumshiskaya A, et al. Brain tissue-volume changes in cosmonauts. N Engl J Med. 2018;379(17):1678–80.

    Article  Google Scholar 

  133. Smith S, Lewty W. Perceptual isolation using a silent room. Lancet. 1959;2(7098):342–5.

    Article  CAS  Google Scholar 

  134. Linde L, Gustafsson C, Ornhagen H. Effects of reduced oxygen partial pressure on cognitive performance in confined spaces. Mil Psychol. 1997;9(2):151–68.

    Article  CAS  Google Scholar 

  135. Rai B, Foing BH, Kaur J. Working hours, sleep, salivary cortisol, fatigue and neuro-behavior during Mars analog mission: five crews study. Neurosci Lett. 2012;516(2):177–81.

    Article  CAS  Google Scholar 

  136. Lipnicki DM, Gunga HC, Belavý DL, Felsenberg D. Bed rest and cognition: effects on executive functioning and reaction time. Aviat Space Environ Med. 2009;80(12):1018–24.

    Article  Google Scholar 

  137. Kanas N, Manzey D. Space psychology and psychiatry. 2nd ed. El Segundo, CA: Springer; 2008.

    Book  Google Scholar 

  138. Dixon ML, Thiruchselvam R, Todd R, Christoff K. Emotion and the prefrontal cortex: an integrative review. Psychol Bull. 2017;143(10):1033–81.

    Article  Google Scholar 

  139. Kraft NO, Inoue N, Mizuno K, Ohshima H, Murai T, Sekiguchi C. Psychological changes and group dynamics during confinement in an isolated environment. Aviat Space Environ Med. 2002;73(2):85–90.

    Google Scholar 

  140. Oberg J. Red star in orbit. New York, NY: Random House Inc; 1981.

    Google Scholar 

  141. Burrough B. Dragonfly: NASA and the crisis aboard MIR. Miami, FL: Harper Collins; 1998.

    Google Scholar 

  142. LoPresti ML, Schon K, Tricarico MD, Swisher JD, Celone KA, Stern CE. Working memory for social cues recruits orbitofrontal cortex and amygdala: a functional magnetic resonance imaging study of delayed matching to sample for emotional expressions. J Neurosci. 2008;28(14):3718–28.

    Article  CAS  Google Scholar 

  143. Frith CD, Singer T. The role of social cognition in decision making. Philos Trans R Soc Lond B Biol Sci. 2008;363(1511):3875–86.

    Article  Google Scholar 

  144. Sanfey AG. Social decision-making: insights from game theory and neuroscience. Science. 2007;318(5850):598–602.

    Article  CAS  Google Scholar 

  145. Bittner AC Jr, Carter RC, Kennedy RS, Harbeson MM, Krause M. Performance evaluation tests for environmental research (PETER): evaluation of 114 measures. Percept Mot Skills. 1986;63:683–708.

    Article  Google Scholar 

  146. Reeves DL, Winter KP, Bleiberg J, Kane RL. ANAM genogram: historical perspectives, description, and current endeavors. Arch Clin Neuropsychol. 2007;22(Suppl 1):S15–37.

    Article  Google Scholar 

  147. Bloomberg JJ, Reschke MF, Clément GR, Mulavara AP, Taylor LC. Evidence report: risk of impaired control of spacecraft/associated systems and decreased mobility due to vestibular/sensorimotor alterations associated with space flight. Houston, TX: National Aeronautics and Space Administration, Lyndon B. Johnson Space Center; 2016.

    Google Scholar 

  148. Salnitski VP, Dudukin AV, Johannes B. Evaluation of operator’s reliability in long-term isolation (The PILOT-Test). In: Baranov VM, editor. Simulation of extended isolation: advances and problems. Slovo, Moscow; 2001. p. 30–50.

    Google Scholar 

  149. Johannes BW, Bubeev Y, Piechowski S, Rittweger J. Individual learning curves in manual control of six degrees of freedom. Int J Appl Psychol. 2019;9.

    Google Scholar 

  150. Ivkovic V, Thoolen S, White BM, Zhang Q, Lockley S, Strangman GE. Operational performance measures: effects of isolation and confinement, altered lighting, habitat volume, and enhanced nutrition on ROBoT-R in HERA. NASA Human Research Program Investigator’s Workshop. Galveston, TX2022.

    Google Scholar 

  151. Whitmire A, Leveton L, Barger L, Brainard G, Dinges D, Klerman E, et al. Risk of performance errors due to sleep loss, circadian desynchronization, fatigue, and work overload (Ch. 3). In: McPhee J, Charles J, editors. Human health and performance risks of space exploration missions. Houston, TX: National Aeronautics and Space Administration, Lyndon B. Johnson Space Center; 2009. p. 85–116.

    Google Scholar 

  152. Manzey D, Lorenz B, Schiewe A, Finell G, Thiele G. Behavioral aspects of human adaptation to space: analyses of cognitive and psychomotor performance in space during an 8-day space mission. Clin Investig. 1993;71(9):725–31.

    Article  CAS  Google Scholar 

  153. Sangals J, Heuer H, Manzey D, Lorenz B. Changed visuomotor transformations during and after prolonged microgravity. Exp Brain Res. 1999;129(3):378–90.

    Article  CAS  Google Scholar 

  154. Moore ST, MacDougall HG, Lesceu X, Speyer JJ, Wuyts F, Clark JB. Head-eye coordination during simulated orbiter landing. Aviat Space Environ Med. 2008;79(9):888–98.

    Article  Google Scholar 

  155. Taylor AJW, Duncum K. Some cognitive effects of wintering-over in the Antarctic. New Zealand J Psychol. 1987;16:93–4.

    Google Scholar 

  156. Mahadevan AD, Hupfeld KE, Lee JK, De Dios YE, Kofman IS, Beltran NE, et al. Head-down-tilt bed rest with elevated CO(2): effects of a pilot spaceflight analog on neural function and performance during a cognitive-motor dual task. Front Physiol. 2021;12:654906.

    Article  Google Scholar 

  157. Roy-O'Reilly M, Mulavara A, Williams T. A review of alterations to the brain during spaceflight and the potential relevance to crew in long-duration space exploration. NPJ Microgravity. 2021;7(1):5.

    Article  Google Scholar 

  158. Koppelmans V, Bloomberg JJ, Mulavara AP, Seidler RD. Brain structural plasticity with spaceflight. NPJ Microgravity. 2016;2:2.

    Article  Google Scholar 

  159. Roberts DR, Albrecht MH, Collins HR, Asemani D, Chatterjee AR, Spampinato MV, et al. Effects of spaceflight on astronaut brain structure as indicated on MRI. N Engl J Med. 2017;377(18):1746–53.

    Article  Google Scholar 

  160. Riascos RF, Kamali A, Hakimelahi R, Mwangi B, Rabiei P, Seidler RD, et al. Longitudinal analysis of quantitative brain MRI in astronauts following microgravity exposure. J Neuroimaging. 2019;29(3):323–30.

    Article  Google Scholar 

  161. Pechenkova E, Nosikova I, Rumshiskaya A, Litvinova L, Rukavishnikov I, Mershina E, et al. Alterations of functional brain connectivity after long-duration spaceflight as revealed by fMRI. Front Physiol. 2019;10:761.

    Article  Google Scholar 

  162. Seidler RD, Mulavara AP, Bloomberg JJ, Peters BT. Individual predictors of sensorimotor adaptability. Front Syst Neurosci. 2015;9:100.

    Article  Google Scholar 

  163. Hupfeld KE, McGregor HR, Koppelmans V, Beltran NE, Kofman IS, De Dios YE, et al. Brain and behavioral evidence for reweighting of vestibular inputs with long-duration spaceflight. Cereb Cortex. 2021.

    Google Scholar 

  164. Diamond A. Executive functions. Annu Rev Psychol. 2013;64:135–68.

    Article  Google Scholar 

  165. Krall SC, Rottschy C, Oberwelland E, Bzdok D, Fox PT, Eickhoff SB, et al. The role of the right temporoparietal junction in attention and social interaction as revealed by ALE meta-analysis. Brain Struct Funct. 2015;220(2):587–604.

    Article  CAS  Google Scholar 

  166. Brem C, Lutz J, Vollmar C, Feuerecker M, Strewe C, Nichiporuk I, et al. Changes of brain DTI in healthy human subjects after 520 days isolation and confinement on a simulated mission to Mars. Life Sci Space Res (Amst). 2020;24:83–90.

    Article  Google Scholar 

  167. Koppelmans V, Bloomberg JJ, De Dios YE, Wood SJ, Reuter-Lorenz PA, Kofman IS, et al. Brain plasticity and sensorimotor deterioration as a function of 70 days head down tilt bed rest. PLoS One. 2017;12(8):e0182236.

    Article  Google Scholar 

  168. Cassady K, Koppelmans V, Reuter-Lorenz P, De Dios Y, Gadd N, Wood S, et al. Effects of a spaceflight analog environment on brain connectivity and behavior. Neuroimage. 2016;141:18–30.

    Article  Google Scholar 

  169. McGregor HR, Lee JK, Mulder ER, De Dios YE, Beltran NE, Kofman IS, et al. Brain connectivity and behavioral changes in a spaceflight analog environment with elevated CO(2). Neuroimage. 2021;225:117450.

    Article  CAS  Google Scholar 

  170. Dijk D, Buckey JC, Neri DF, Wyatt JK, Ronda JM, Riel E, et al. Portable sleep monitoring system. In: Buckey Jr JC, Homick JL, editors. The Neurolab Spacelab Mission: neuroscience research in space Houston. TX: NASA; 2003. p. 249–51.

    Google Scholar 

  171. Marušič U, Meeusen R, Pišot R, Kavcic V. The brain in micro- and hypergravity: the effects of changing gravity on the brain electrocortical activity. Eur J Sport Sci. 2014;14(8):813–22.

    Article  Google Scholar 

  172. Cheron G, Leroy A, De Saedeleer C, Bengoetxea A, Lipshits M, Cebolla A, et al. Effect of gravity on human spontaneous 10-Hz electroencephalographic oscillations during the arrest reaction. Brain Res. 2006;1121(1):104–16.

    Article  CAS  Google Scholar 

  173. Cheron G, Leroy A, Palmero-Soler E, De Saedeleer C, Bengoetxea A, Cebolla AM, et al. Gravity influences top-down signals in visual processing. PLoS One. 2014;9(1):e82371.

    Article  Google Scholar 

  174. Cebolla AM, Petieau M, Dan B, Balazs L, McIntyre J, Cheron G. Cerebellar contribution to visuo-attentional alpha rhythm: insights from weightlessness. Sci Rep. 2016;6:37824.

    Article  CAS  Google Scholar 

  175. Mecklinger A, Friederici AD, Güssow T. Attention and mental performance in confinement: evidence from cognitive psychophysiology. Adv Space Biol Med. 1996;5:183–200.

    Article  CAS  Google Scholar 

  176. Genik RJ 2nd, Green CC, Graydon FX, Armstrong RE. Cognitive avionics and watching spaceflight crews think: generation-after-next research tools in functional neuroimaging. Aviat Space Environ Med. 2005;76(6 Suppl):B208–12.

    Google Scholar 

  177. Strangman GE, Ivkovic V, Zhang Q. Wearable brain imaging with multimodal physiological monitoring. J Appl Physiol (1985). 2018;124(3):564–72.

    Article  Google Scholar 

  178. Suedfeld P. Invulnerability, coping, salutogenesis, integration: four phases of space psychology. Aviat Space Environ Med. 2005;76(6 Suppl):B61–6.

    Google Scholar 

  179. Palinkas LA, Suedfeld P. Psychological effects of polar expeditions. Lancet. 2008;371(9607):153–63.

    Article  Google Scholar 

  180. Suedfeld P. Applying positive psychology in the study of extreme environments. Hum Perf Extrem Environ. 2001;6(1):21–5.

    CAS  Google Scholar 

  181. Antonovsky A. Unraveling the mystery of health: how people manage stress and stay well. San Francisco, CA: Jossey-Bass; 1987.

    Google Scholar 

  182. Suedfeld P, Brcic J, Johnson PJ, Gushin V. Personal growth following long-duration spaceflight. Acta Astronautica. 2012;79:118–23.

    Article  Google Scholar 

  183. Wood J, Hysong SJ, Lugg DJ, Harm DL. Is it really so bad? A comparison of positive and negative experiences in Antarctic winter stations. Environ Behav. 2000;32(1):84–110.

    Article  CAS  Google Scholar 

  184. Steel GD. Polar bonds: environmental relationships in the Polar regions. Environ Behav. 2000;32(6):796–816.

    Article  Google Scholar 

  185. Ihle EC, Ritsher JB, Kanas N. Positive psychological outcomes of spaceflight: an empirical study. Aviat Space Environ Med. 2006;77(2):93–101.

    Google Scholar 

  186. Palinkas LA. Health and performance of Antarctic winter-over personnel: a follow-up study. Aviat Space Environ Med. 1986;57(10 Pt 1):954–9.

    CAS  Google Scholar 

  187. Ayaz H, Shewokis PA, Bunce S, Izzetoglu K, Willems B, Onaral B. Optical brain monitoring for operator training and mental workload assessment. Neuroimage. 2012;59(1):36–47.

    Article  Google Scholar 

  188. Schneider S, Abeln V, Popova J, Fomina E, Jacubowski A, Meeusen R, et al. The influence of exercise on prefrontal cortex activity and cognitive performance during a simulated space flight to Mars (MARS500). Behav Brain Res. 2013;236(1):1–7.

    Article  Google Scholar 

  189. Zwart SR, Mulavara AP, Williams TJ, George K, Smith SM. The role of nutrition in space exploration: Implications for sensorimotor, cognition, behavior and the cerebral changes due to the exposure to radiation, altered gravity, and isolation/confinement hazards of spaceflight. Neurosci Biobehav Rev. 2021;127:307–31.

    Article  Google Scholar 

  190. Corbett RW, Middleton B, Arendt J. An hour of bright white light in the early morning improves performance and advances sleep and circadian phase during the Antarctic winter. Neurosci Lett. 2012;525(2):146–51.

    Article  CAS  Google Scholar 

  191. Pagnini F, Phillips D, Bercovitz K, Langer E. Mindfulness and relaxation training for long duration spaceflight: evidences from analog environments and military settings. Acta Astronautica. 2019;165:1–8.

    Article  Google Scholar 

  192. Mardanov AV, Babykin MM, Beletsky AV, Grigoriev AI, Zinchenko VV, Kadnikov VV, et al. Metagenomic analysis of the dynamic changes in the gut microbiome of the participants of the MARS-500 experiment, simulating long term space flight. Acta Naturae. 2013;5(3):116–25.

    Article  CAS  Google Scholar 

  193. Brereton NJB, Pitre FE, Gonzalez E. Reanalysis of the Mars500 experiment reveals common gut microbiome alterations in astronauts induced by long-duration confinement. Comput Struct Biotechnol J. 2021;19:2223–35.

    Article  CAS  Google Scholar 

  194. Morrison MD, Thissen JB, Karouia F, Mehta S, Urbaniak C, Venkateswaran K, et al. Investigation of spaceflight induced changes to astronaut microbiomes. Front Microbiol. 2021;12:659179.

    Article  Google Scholar 

  195. Sarkar A, Harty S, Lehto SM, Moeller AH, Dinan TG, Dunbar RIM, et al. The microbiome in psychology and cognitive neuroscience. Trends Cogn Sci. 2018;22(7):611–36.

    Article  Google Scholar 

  196. Kühn S, Lorenz R, Banaschewski T, Barker GJ, Büchel C, Conrod PJ, et al. Positive association of video game playing with left frontal cortical thickness in adolescents. PLoS One. 2014;9(3):e91506.

    Article  Google Scholar 

  197. Kühn S, Lorenz RC, Weichenberger M, Becker M, Haesner M, O'Sullivan J, et al. Taking control! Structural and behavioural plasticity in response to game-based inhibition training in older adults. Neuroimage. 2017;156:199–206.

    Article  Google Scholar 

  198. Lövdén M, Bäckman L, Lindenberger U, Schaefer S, Schmiedek F. A theoretical framework for the study of adult cognitive plasticity. Psychol Bull. 2010;136(4):659–76.

    Article  Google Scholar 

  199. Vessel EA, Russo S. Effects of reduced sensory stimulation and assessment of countermeasures for sensory stimulation augmentation. NASA Technical Report NASA/TM-2015-218576. NASA Center for AeroSpace Information: Hanover, MD; 2015.

    Google Scholar 

  200. Romanella SM, Sprugnoli G, Ruffini G, Seyedmadani K, Rossi S, Santarnecchi E. Noninvasive brain stimulation & space exploration: opportunities and challenges. Neurosci Biobehav Rev. 2020;119:294–319.

    Article  CAS  Google Scholar 

  201. Moore TM, Basner M, Nasrini J, Hermosillo E, Kabadi S, Roalf DR, et al. Validation of the cognition test battery for spaceflight in a sample of highly educated adults. Aerosp Med Hum Perform. 2017;88(10):937–46.

    Article  Google Scholar 

  202. Lee G, Moore TM, Basner M, Nasrini J, Roalf DR, Ruparel K, et al. Age, sex, and repeated measures effects on NASA’s “Cognition” test battery in STEM educated adults. Aerosp Med Hum Perform. 2020;91(1):18–25.

    Article  Google Scholar 

  203. Wong L, Pradhan S, Karasinski J, Hu C, Strangman G, Ivkovic V, et al. Performance on the robotics on-board trainer (ROBoT-r) spaceflight simulation during acute sleep deprivation. Front Neurosci. 2020;14:697.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary Strangman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Thoolen, S., Strangman, G. (2022). Cognitive Performance and Neuromapping. In: Michael, A.P., Otto, C., Reschke, M.F., Hargens, A.R. (eds) Spaceflight and the Central Nervous System. Springer, Cham. https://doi.org/10.1007/978-3-031-18440-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-18440-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-18439-0

  • Online ISBN: 978-3-031-18440-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics