Skip to main content

The Enzymatic Core of Snakes

  • Conference paper
  • First Online:
XLV Mexican Conference on Biomedical Engineering (CNIB 2022)

Abstract

The snake’s venom conformation consists of several enzymes and other proteins which all contribute to the envenomation phenomena. Our objective consists in finding an enzymatic core along a snake-population study in order to achieve a better understanding of the role played by these enzymes. Such identification will build up our hypothesis that all venomous organisms share an enzymatic core. For enzymes identification, transcriptomic data available from selected snake species was processed, followed by an intersection analysis. An enzymatic core composed by 50 enzyme classes was found with an overall high presence of hydrolases. Unexpectedly, among the core components, an elevated amount of serine endopeptidases was identified and associated to the enhancement of the venom’s action in its host, which has been described in the properties of Furin in Loxosceles’ venom. Evidence was found of a correlation between previously described scorpion’s enzymatic core and snake’s enzymatic core described herein, supporting the idea of a shared enzymatic core among all venomous animals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Post, Y., et al.: Snake venom gland organoids. Cell 180(2), 233–247.e21 (2020). https://doi.org/10.1016/j.cell.2019.11.038

    Article  Google Scholar 

  2. Bottrall, J.L., Madaras, F., Biven, C.D., Venning, M.G., Mirtschin, P.J.: Proteolytic activity of Elapid and Viperid Snake venoms and its implication to digestion (2010)

    Google Scholar 

  3. Thornton, S.L.: Snakes. In: Encyclopedia of Toxicology, pp. 310–312. Elsevier (2014). https://doi.org/10.1016/B978-0-12-386454-3.00786-7

  4. Charvat, R.A., Strobel, R.M., Pasternak, M.A., Klass, S.M., Rheubert, J.L.: Analysis of snake venom composition and antimicrobial activity. Toxicon 150, 151–167 (2018). https://doi.org/10.1016/j.toxicon.2018.05.016

    Article  Google Scholar 

  5. Delgado-Prudencio, G., Cid-Uribe, J.I., Morales, J.A., Possani, L.D., Ortiz, E., Romero-Gutiérrez, T.: The enzymatic core of scorpion venoms. Toxins (Basel) 14(4), 248 (2022). https://doi.org/10.3390/TOXINS14040248

    Article  Google Scholar 

  6. Ramstedt, B., Slotte, J.P.: Membrane properties of sphingomyelins. FEBS Lett. 531(1), 33–37 (2002). https://doi.org/10.1016/S0014-5793(02)03406-3

    Article  Google Scholar 

  7. Dunbar, J.P., Sulpice, R., Dugon, M.M.: The kiss of (cell) death: can venom-induced immune response contribute to dermal necrosis following arthropod envenomations? Clin. Toxicol. 57(8), 677–685 (2019). https://doi.org/10.1080/15563650.2019.1578367

    Article  Google Scholar 

  8. Cid-Uribe, J.I., Veytia-Bucheli, J.I., Romero-Gutierrez, T., Ortiz, E., Possani, L.D.: Scorpion venomics: a 2019 overview. Exp. Rev. Proteomics 17(1), 67–83 (2019). https://doi.org/10.1080/14789450.2020.1705158

    Article  Google Scholar 

  9. Lazarovici, P.: Snake- and spider-venom-derived toxins as lead compounds for drug development. Methods Mol. Biol. 2068, 3–26 (2020). https://doi.org/10.1007/978-1-4939-9845-6_1

  10. Minutti-Zanella, C., Gil-Leyva, E.J., Vergara, I.: Immunomodulatory properties of molecules from animal venoms. Toxicon 191, 54–68 (2021). https://doi.org/10.1016/j.toxicon.2020.12.018. Elsevier Ltd

  11. Costa, T.R., Burin, S.M., Menaldo, D.L., de Castro, F.A., Sampaio, S.V.: Snake venom L-amino acid oxidases: an overview on their antitumor effects. J. Venomous Animals Toxins Includ. Trop. Dis. 20(1), 23 (2014). https://doi.org/10.1186/1678-9199-20-23

  12. Tasoulis, T., Isbister, G.K.: A review and database of snake venom proteomes. Toxins 9(9) (2017). https://doi.org/10.3390/toxins9090290. (MDPI AG)

  13. Adamude, F.A., et al.: Proteomic analysis of three medically important Nigerian Naja (Naja haje, Naja katiensis and Naja nigricollis) snake venoms. Toxicon 197, 24–32 (2021). https://doi.org/10.1016/J.TOXICON.2021.03.014

    Article  Google Scholar 

  14. Bénard-Valle, M., et al.: Functional, proteomic and transcriptomic characterization of the venom from Micrurus browni browni: identification of the first lethal multimeric neurotoxin in coral snake venom. J. Proteomics 225, 103863 (2020). https://doi.org/10.1016/J.JPROT.2020.103863

    Article  Google Scholar 

  15. Santos, W.S., et al.: Proteomic analysis reveals rattlesnake venom modulation of proteins associated with cardiac tissue damage in mouse hearts. J. Proteomics 258, 104530 (2022). https://doi.org/10.1016/J.JPROT.2022.104530

    Article  Google Scholar 

  16. Choksawangkarn, W., et al.: Combined proteomic strategies for in-depth venomic analysis of the beaked sea snake (Hydrophis schistosus) from Songkhla Lake, Thailand. J. Proteomics 259 (2022). https://doi.org/10.1016/j.jprot.2022.104559

  17. Zhang, S.X., et al.: Transcriptome analysis of venom gland and identification of functional genes for snake venom protein in Agkistrodon acutus. Zhongguo Zhong Yao Za Zhi 44(22), 4820–4829 (2019). https://doi.org/10.19540/J.CNKI.CJCMM.20190829.105

    Article  Google Scholar 

  18. Modahl, C.M., Brahma, R.K., Koh, C.Y., Shioi, N., Kini, R.M.: Omics technologies for profiling toxin diversity and evolution in snake venom: impacts on the discovery of therapeutic and diagnostic agents. Annu. Rev. Anim. Biosci. 8, 91–116 (2020). https://doi.org/10.1146/ANNUREV-ANIMAL-021419-083626

    Article  Google Scholar 

  19. Leinonen, R., Sugawara, H., Shumway, M.: The sequence read archive. Nucleic Acids Res. 39(SUPPL), 1 (2011). https://doi.org/10.1093/nar/gkq1019

    Article  Google Scholar 

  20. Bushmanova, E., Antipov, D., Lapidus, A., Prjibelski, A.D.: RnaSPAdes: A de novo transcriptome assembler and its application to RNA-Seq data. Gigascience 8(9) (2019). https://doi.org/10.1093/gigascience/giz100

  21. Prjibelski, A., Antipov, D., Meleshko, D., Lapidus, A., Korobeynikov, A.: Using SPAdes De Novo Assembler. Curr. Protocols Bioinf. 70(1) (2020). https://doi.org/10.1002/cpbi.102

  22. Buchfink, B., Reuter, K., Drost, H.-G.: Brief Communication Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat. Methods https://doi.org/10.1038/s41592-021-01101-x

  23. Chang, A., et al.: BRENDA, the ELIXIR core data resource in 2021: new developments and updates. Nucleic Acids Res. 49(D1), D498–D508 (2021). https://doi.org/10.1093/nar/gkaa1025

    Article  Google Scholar 

  24. Casewell, N.R., Jackson, T.N.W., Laustsen, A.H., Sunagar, K.: Causes and consequences of snake venom variation. Trends Pharmacol. Sci. 41(8), 570–581 (2020). https://doi.org/10.1016/j.tips.2020.05.006

    Article  Google Scholar 

  25. Tan, C.H.: Snake venomics: fundamentals, recent updates, and a look to the next decade. Toxins 14(4) (2022). https://doi.org/10.3390/toxins14040247. (MDPI)

  26. Corrêa-Netto, C., et al.: Snake venomics and venom gland transcriptomic analysis of Brazilian coral snakes, Micrurus altirostris and M. corallinus. J. Proteomics 74(9), 1795–1809 (2011). https://doi.org/10.1016/J.JPROT.2011.04.003

    Article  Google Scholar 

  27. Rodrigues, R.S., et al.: Combined snake venomics and venom gland transcriptomic analysis of Bothropoides pauloensis. J. Proteomics 75(9), 2707–2720 (2012). https://doi.org/10.1016/J.JPROT.2012.03.028

    Article  Google Scholar 

  28. Izidoro, L.F.M., et al.: Snake Venom L-Amino acid oxidases: trends in pharmacology and biochemistry. Biomed. Res. Int. 2014, 1–19 (2014). https://doi.org/10.1155/2014/196754

    Article  Google Scholar 

  29. Hiu, J.J., Yap, M.K.K.: Cytotoxicity of snake venom enzymatic toxins: phospholipase A2 and <scp>l</scp> -amino acid oxidase. Biochem. Soc. Trans. 48(2), 719–731 (2020). https://doi.org/10.1042/BST20200110

    Article  Google Scholar 

  30. Montecucco, C., Gutiérrez, J.M., Lomonte, B.: Cellular pathology induced by snake venom phospholipase A2 myotoxins and neurotoxins: common aspects of their mechanisms of action. Cell. Mol. Life Sci. 65(18), 2897–2912 (2008). https://doi.org/10.1007/s00018-008-8113-3

    Article  Google Scholar 

  31. Laing, G.D., Moura-da-Silva, A.M.: Jararhagin and its multiple effects on hemostasis. Toxicon 45(8), 987–996 (2005). https://doi.org/10.1016/j.toxicon.2005.02.013

    Article  Google Scholar 

  32. Mutter, N.L., Soskine, M., Huang, G., Albuquerque, I.S., Bernardes, G.J.L., Maglia, G.: Modular pore-forming immunotoxins with caged cytotoxicity tailored by directed evolution. ACS Chem. Biol. 13(11), 3153–3160 (2018). https://doi.org/10.1021/acschembio.8b00720

    Article  Google Scholar 

  33. Lopes, P.H., van den Berg, C.W., Tambourgi, D.V.: Sphingomyelinases D from Loxosceles Spider Venoms and Cell Membranes: Action on Lipid Rafts and Activation of Endogenous Metalloproteinases. Front. Pharmacol. 11 (2020). https://doi.org/10.3389/fphar.2020.00636

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernesto Borrayo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Juárez-Zucco, L., Alvarado-Aparicio, V., Romero-Gutiérrez, T., Borrayo, E. (2023). The Enzymatic Core of Snakes. In: Trujillo-Romero, C.J., et al. XLV Mexican Conference on Biomedical Engineering. CNIB 2022. IFMBE Proceedings, vol 86. Springer, Cham. https://doi.org/10.1007/978-3-031-18256-3_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-18256-3_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-18255-6

  • Online ISBN: 978-3-031-18256-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics