Skip to main content

Ultrasonic Synthesis and Characterization of Zinc Pyrovanadate Nanostructures

  • Conference paper
  • First Online:
Nanomaterials and Nanocomposites, Nanostructure Surfaces, and Their Applications

Abstract

The unique low temperature synthesis of zinc pyrovanadate from oxides was proposed. Zn3V2O7(OH)2·2(H2O) was synthesized by ultrasonic (US) method using ZnO and V2O5 as raw materials. It was established using SEM and TEM methods that Zn3V2O7(OH)2·2(H2O) has the structure of nanosheets. The DTA method and XRD analysis showed the formation of the Zn3V2O8 phase after the removal of crystallization water from Zn3V2O7(OH)2·2(H2O). Ultrasonic treatment of oxides as initial reagents allows obtaining Zn3V2O8 with the specific surface area of 14 m2/g. For comparison, Zn3V2O8 was synthesized by solid-state (SS) synthesis from oxides. The properties of zinc pyrovanadate obtained by US synthesis and conventional SS synthesis were compared. The advantages of US method over conventional SS synthesis were noted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Putluru SSR, Schill L, Godiksen A, Poreddy R, Mossin S, Jensen AD, Fehrmann R (2016) Promoted V2O5/TiO2 catalysts for selective catalytic reduction of NO with NH3 at low temperatures. Appl Catal B 183:282–290. https://doi.org/10.1016/j.apcatb.2015.10.044

    Article  Google Scholar 

  2. Zazhigalov VA, Diyuk EA, Sidorchuk VV (2014) Development of VPO catalysts supported on mesoporous modified material based on an aerosol gel. Kinet Catal 55(3):399–408. https://doi.org/10.1134/S002315840904017X

    Article  Google Scholar 

  3. Pessoa JC, Etcheverry S (2015) Vanadium compounds in medicine. Coordination Chem Rev 301–302:24–48. https://doi.org/10.1016/j.ccr.2014.12.002

  4. Semiz S (2022) Vanadium as potential therapeutic agent for COVID-19: A focus on its antiviral, antiinflamatory, and antihyperglycemic effects. J Trace Elem Med Biol 69:126887. https://doi.org/10.1016/j.jtemb.2021.126887

    Article  Google Scholar 

  5. Qian T, Fan B, Wang H, Zhu S (2019) Structure and luminescence properties of Zn3V2O8 yellow phosphor for white light emitting diodes. Chem Phys Lett 715:34–39. https://doi.org/10.1016/j.cplett.2018.11.022

  6. Gan L, Deng D, Zhang Y, Li G, Wang X, Jiang L, Wang C (2014) Zn3V2O8 hexagon nanosheets: a high-performance anode material for lithium-ion batteries. J Mater Chem A 2:2461–2466. https://doi.org/10.1039/C3TA14242F

  7. Xia C, Guo J, Lei Y, Liang H, Zhao C, Alshareef H (2017) Rechargeable aqueous Zinc-Ion battery based on porous framework Zinc pyrovanadate intercalation cathode. Adv Mater 1705580. https://doi.org/10.1002/adma.201705580

  8. Khallouk K, Solhy A, Kherbeche A, Dubreucq E, Kouisni L, Barakat A (2020) Effective catalytic delignification and fractionation of lignocellulosic biomass in water over Zn3V2O8 mixed oxide. ACS Omega 5(1):304–316. https://doi.org/10.1021/acsomega.9b02159

  9. Khallouk K, Solhy A, Idrissi N, Flaud V, Kherbeche A, Barakat A (2020) Microwave-assisted selective oxidation of sugars to carboxylic acids derivatives in water over zinc-vanadium mixed oxide. Chem Eng J 385:123914. https://doi.org/10.1016/j.cej.2019.123914

  10. Wang D, Tang J, Zou Z, Ye J (2005) Photophysical and photocatalytic properties of a new series of visible-light-driven photocatalysts M3V2O8 (M = Mg, Ni, Zn). Chem Mater 17:5177–5182. https://doi.org/10.1021/cm051016x

    Article  Google Scholar 

  11. Shi R, Wang Y, Zhoub F, Zhu Y (2011) Zn3V2O7(OH)2(H2O)2 and Zn3V2O8 nanostructures: controlled fabrication and photocatalytic performance. J Mater Chem 21:6313–6320. https://doi.org/10.1039/C0JM04451B

    Article  Google Scholar 

  12. Mondal C, Ganguly M, Sinha AK, Pal J, Sahoo R, Pal T (2013) Robust cubooctahedron Zn3V2O8 in gram quantity: a material for photocatalytic dye degradation in water. Cryst Eng Comm 15:6745–6751. https://doi.org/10.1039/C3CE40852C

  13. Liu F, Guan Y, Sun R, Liang X, Sun P, Liu F, Lu G (2015) Mixed potential type acetone sensor using stabilized zirconia and M3V2O8 (M: Zn, Co and Ni) sensing electrode. Sens Actuat B 221:673–680. https://doi.org/10.1016/j.snb.2015.07.023

    Article  Google Scholar 

  14. Hua K, Cui M, Luo Z, Fang D, Bao R, Qi Q, Yi J, Sun B, Chen C (2019) Fabrication of Zinc pyrovanadate (Zn3(OH)2V2O7·2H2O) nanosheet spheres as an ethanol gas sensor. J Alloy Compd 801:581–588. https://doi.org/10.1016/j.jallcom.2019.06.015

    Article  Google Scholar 

  15. Zhang SY, Xiao X, Lu M, Li ZQ (2013) Zn3V2O7(OH)22H2O and Zn3(VO4)2 3D microspheres as anode materials for lithium-ion batteries. J Mater Sci 48:3679–3685. https://doi.org/10.1007/s10853-013-7164-5

    Article  ADS  Google Scholar 

  16. Zhang S, Lei N, Ma W, Zhang Z, Sun Z, Wang Y (2014) Fabrication of ultralong Zn3V2O7(OH)22H2O nanobelts and its application in lithium-ion batteries. Mat Lett 129:91–94. https://doi.org/10.1016/j.matlet.2014.05.047

  17. Gopal R, Calvo C (1971) Crystal structure of a-Zn3(VO4)2. Can J Chem 49:3056–3059. https://doi.org/10.1139/v71-510

    Article  Google Scholar 

  18. Clark GM, Pick AN (1975) DTA study of the reactions of V2O5 with metal (II) oxides. J Therm Anal 7:289–300. https://doi.org/10.1007/BF01911939

    Article  Google Scholar 

  19. Nord AG, Stefanidis T (1985) Crystal chemistry of a—(Zn, M)2V2O7 solid solutions correlation between preference for five-coordination and extension of solid solubility. Mat Res Bull 20:845–851. https://doi.org/10.1016/0025-5408(85)90064-9

    Article  Google Scholar 

  20. Kurzawa M, Rychlowska-Himmel I, Bosacka M, Blonska-Tabero A (2001) Reinvestigation of phase equilibria in the V2O5–ZnO system. J Therm Anal Calorim 64:1113–1119. https://doi.org/10.1023/A:1011524424682

    Article  Google Scholar 

  21. Yang G, Li S, Wu M, Wang C (2016) Zinc pyrovanadate nanosheet of atomic thickness: excellent li-storage properties and investigation of electrochemical mechanism. J Mater Chem A 4:10974–10985. https://doi.org/10.1039/C6TA02782B

  22. Mazloom F, Masjedi-Arani M, Salavati-Niasari M (2017) Rapid and solvent-free solid-state synthesis and characterization of Zn3V2O8 nanostructures and their phenol red aqueous solution photodegradation. Solid State Sci 70:101–109. https://doi.org/10.1016/j.solidstatesciences.2017.06.013

    Article  ADS  Google Scholar 

  23. Low WH, Khiew PS, Lim SS, Siong CW, Chia CH, Ezeigwe ER (2019) Facile synthesis of graphene-Zn3V2O8 nanocomposite as a high performance electrode material for symmetric supercapacitor. J Alloy Compd 784:847–858. https://doi.org/10.1016/j.jallcom.2019.01.137

    Article  Google Scholar 

  24. Bayat A, Mahjoub AR, Amini MM (2018) Optical and magnetic properties of zinc vanadates: synthetic design of colloidal Zn3V2O7(OH)2(H2O)2, ZnV2O4 and Zn3V2O8 nanostructures. J Mater Sci: Mater Electron 29:2915–2926. https://doi.org/10.1007/s10854-017-8222-6

    Article  Google Scholar 

  25. Diyuk OA, Zazhigalov VA, Shcherban ND, Permyakov VV, Diyuk NV, Shcherbakov SM, Sachuk1 OV, Dulian P (2021) Kinetics of ZnMoO4·0.8H2O and α-ZnMoO4 formation at ultrasonic treatment of ZnO and MoO3 mixture. In: Fesenko O, Yatsenko L (eds) Nanocomposites, nanostructures, and their applications. Springer Proceedings in Physics book series, vol 263, 87–101. https://doi.org/10.1007/978-3-030-74741-1_6

  26. Luo J, Ning X, Zhan L, Zhou X (2021) Facile construction of a fascinating Z-scheme AgI/Zn3V2O8 photocatalyst for the photocatalytic degradation of tetracycline under visible light irradiation. Sep Purif Technol 255:117691. https://doi.org/10.1016/j.seppur.2020.117691

    Article  Google Scholar 

  27. Hoyos DA, Echavarria A, Saldarriaga C (2001) Synthesis and structure of a porous zinc vanadate, Zn3(VO4)2·3H2O. J Mater Sci 36:5515–5518. https://doi.org/10.1023/A:1012418706071

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by NASU Program “New functional substances and materials of chemical production” (project 13-21).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Diyuk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Diyuk, O.A. et al. (2023). Ultrasonic Synthesis and Characterization of Zinc Pyrovanadate Nanostructures. In: Fesenko, O., Yatsenko, L. (eds) Nanomaterials and Nanocomposites, Nanostructure Surfaces, and Their Applications . Springer Proceedings in Physics, vol 279. Springer, Cham. https://doi.org/10.1007/978-3-031-18096-5_16

Download citation

Publish with us

Policies and ethics