Skip to main content

Interpretable Lung Cancer Diagnosis with Nodule Attribute Guidance and Online Model Debugging

  • Conference paper
  • First Online:
  • 392 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13611))

Abstract

Accurate nodule labeling and interpretable machine learning are important for lung cancer diagnosis. To circumvent the label ambiguity issue of commonly-used unsure nodule data such as LIDC-IDRI, we constructed a sure nodule data with gold-standard clinical diagnosis. To make the traditional CNN networks interpretable, we propose herewith a novel collaborative model to improve the trustworthiness of lung cancer predictions by self-regulation, which endows the model with the ability to provide explanations in meaningful terms to a human-observer. The proposed collaborative model transfers domain knowledge from unsure data to sure data and encodes a cause-and-effect logic based on nodule segmentation and attributes. Further, we construct a regularization strategy that treats the visual saliency maps (Grad-CAM) not only as post-hoc model interpretation, but also as a rational measure for trustworthy learning in such a way that the CNN features are extracted mainly from intrinsic nodule features. Moreover, similar nodule retrieval makes a nodule diagnosis system more understandable and credible to humans-observers based on the nodule attributes. We demonstrate that the combination of the collaborative model and regularization strategy can provide the best performances on lung cancer prediction and interpretable diagnosis that can automatically: 1) classify the nodule patches; 2) analyse and explain a prediction by nodule segmentation and attributes; and 3) retrieve similar nodules for comparison and diagnosis.

H. Zhang and L. Chen—Joint first authors of this work.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://www.kaggle.com/c/data-science-bowl-2017/.

References

  1. Adebayo, J., Gilmer, J., Muelly, M., Goodfellow, I., Hardt, M., Kim, B.: Sanity checks for saliency maps. Adv. Neural Inf. Process. Syst. 31, 1–11 (2018)

    Google Scholar 

  2. Armato, S.G., III., et al.: The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans. Med. Phys. 38(2), 915–931 (2011)

    Article  Google Scholar 

  3. Armato, S.G., III., et al.: Lung image database consortium: developing a resource for the medical imaging research community. Radiology 232(3), 739–748 (2004)

    Article  Google Scholar 

  4. Arun, N., et al.: Assessing the trustworthiness of saliency maps for localizing abnormalities in medical imaging. Radiol. Artif. Intell. 3(6), e200267 (2021)

    Article  Google Scholar 

  5. Geirhos, R., et al.: Shortcut learning in deep neural networks. Nat. Mach. Intell. 2(11), 665–673 (2020)

    Article  Google Scholar 

  6. Gunning, D., Stefik, M., Choi, J., Miller, T., Stumpf, S., Yang, G.Z.: XAI-explainable artificial intelligence. Sci. Robot. 4(37), 1–6 (2019)

    Article  Google Scholar 

  7. Hansell, D.M., Bankier, A.A., MacMahon, H., McLoud, T.C., Muller, N.L., Remy, J.: Fleischner society: glossary of terms for thoracic imaging. Radiology 246(3), 697–722 (2008)

    Article  Google Scholar 

  8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  9. Hussein, S., Cao, K., Song, Q., Bagci, U.: Risk stratification of lung nodules using 3D CNN-based multi-task learning. In: Niethammer, M., et al. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 249–260. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59050-9_20

    Chapter  Google Scholar 

  10. Jacobs, C., van Ginneken, B.: Google’s lung cancer AI: a promising tool that needs further validation. Nat. Rev. Clin. Oncol. 16(9), 532–533 (2019)

    Article  Google Scholar 

  11. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  12. Kirby, J.S., et al.: LungX challenge for computerized lung nodule classification. J. Med. Imaging 3(4), 044506 (2016)

    Article  Google Scholar 

  13. Kubota, T., Jerebko, A.K., Dewan, M., Salganicoff, M., Krishnan, A.: Segmentation of pulmonary nodules of various densities with morphological approaches and convexity models. Med. Image Anal. 15(1), 133–154 (2011)

    Article  Google Scholar 

  14. Liu, L., Dou, Q., Chen, H., Qin, J., Heng, P.A.: Multi-task deep model with margin ranking loss for lung nodule analysis. IEEE Trans. Med. Imaging 39(3), 718–728 (2019)

    Article  Google Scholar 

  15. McNitt-Gray, M.F., et al.: The lung image database consortium (LIDC) data collection process for nodule detection and annotation. Acad. Radiol. 14(12), 1464–1474 (2007)

    Article  Google Scholar 

  16. Samek, W., Montavon, G., Vedaldi, A., Hansen, L.K., Müller, K.-R.: Explainable AI: Interpreting, Explaining and Visualizing Deep Learning. LNCS (LNAI), vol. 11700. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-28954-6

  17. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 618–626 (2017)

    Google Scholar 

  18. Setio, A.A.A., et al.: Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: the luna16 challenge. Med. Image Anal. 42, 1–13 (2017)

    Article  Google Scholar 

  19. Shad, R., Cunningham, J.P., Ashley, E.A., Langlotz, C.P., Hiesinger, W.: Designing clinically translatable artificial intelligence systems for high-dimensional medical imaging. Nat. Mach. Intell. 3(11), 929–935 (2021)

    Article  Google Scholar 

  20. Shen, W., et al.: Multi-crop convolutional neural networks for lung nodule malignancy suspiciousness classification. Pattern Recogn. 61, 663–673 (2017)

    Article  Google Scholar 

  21. Team, N.L.S.T.R.: The national lung screening trial: overview and study design. Radiology. 258(1), 243–253 (2011)

    Google Scholar 

  22. Team, N.L.S.T.R.: Reduced lung-cancer mortality with low-dose computed tomographic screening. New England J. Med. 365(5), 395–409 (2011)

    Google Scholar 

  23. Wang, Q., et al.: WGAN-based synthetic minority over-sampling technique: improving semantic fine-grained classification for lung nodules in CT images. IEEE Access 7, 18450–18463 (2019)

    Article  Google Scholar 

  24. Wu, B., Zhou, Z., Wang, J., Wang, Y.: Joint learning for pulmonary nodule segmentation, attributes and malignancy prediction. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 1109–1113. IEEE (2018)

    Google Scholar 

  25. Wu, Y., He, K.: Group normalization. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11217, pp. 3–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01261-8_1

    Chapter  Google Scholar 

  26. Xie, Y., Xia, Y., Zhang, J., Feng, D.D., Fulham, M., Cai, W.: Transferable multi-model ensemble for benign-malignant lung nodule classification on chest CT. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 656–664. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_75

    Chapter  Google Scholar 

  27. Xie, Y., et al.: Knowledge-based collaborative deep learning for benign-malignant lung nodule classification on chest CT. IEEE Trans. Med. Imaging 38(4), 991–1004 (2018)

    Article  Google Scholar 

  28. Zhang, H., et al.: Faithful learning with sure data for lung nodule diagnosis. arXiv preprint arXiv:2202.12515 (2022)

  29. Zhang, H., et al.: Re-thinking and re-labeling LIDC-IDRI for robust pulmonary cancer prediction. arXiv preprint arXiv:2207.14238 (2022)

  30. Zhang, H., Gu, Y., Qin, Y., Yao, F., Yang, G.Z.: Learning with sure data for nodule-level lung cancer prediction. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12266, pp. 570–578. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59725-2_55

  31. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep features for discriminative localization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2921–2929 (2016)

    Google Scholar 

Download references

Acknowledgment

This work was partly supported by Medicine-Engineering Interdisciplinary Research Foundation of Shanghai Jiao Tong University (YG2021QN128), Shanghai Sailing Program (20YF1420800), National Nature Science Foundation of China (No.62003208), Shanghai Municipal of Science and Technology Project (Grant No. 20JC1419500), and Science and Technology Commission of Shanghai Municipality (Grant 20DZ2220400).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhexin Wang , Yun Gu or Guang-Zhong Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, H. et al. (2022). Interpretable Lung Cancer Diagnosis with Nodule Attribute Guidance and Online Model Debugging. In: Reyes, M., Henriques Abreu, P., Cardoso, J. (eds) Interpretability of Machine Intelligence in Medical Image Computing. iMIMIC 2022. Lecture Notes in Computer Science, vol 13611. Springer, Cham. https://doi.org/10.1007/978-3-031-17976-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-17976-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-17975-4

  • Online ISBN: 978-3-031-17976-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics