Skip to main content

Part of the book series: Lessons from the ICU ((LEICU))

  • 592 Accesses

Abstract

The body’s response to infection consists of the release of various cytokines and mediators inducing a state of vasoplegia clinically characterized by hypotension, increased heart rate, and decreased cardiac output. The hyperdynamic low-pressure state, which we recognizes in clinical practice, is usually the consequence of the initial fluid resuscitation. When hypotension persists and lactate levels are increased, the patient meets the criteria for septic shock, the most severe case of sepsis with still mortality rates of more than 30%. The clinical management of septic shock patients remains a challenge as a limited number of safe and effective treatments together with an even more limited number of parameters to assess adequacy of treatment are present. In addition, almost all available treatments may have significant side effects so that a one-size-fits-all treatment should only be used in the initial start of a treatment schedule. In this chapter, these different elements are discussed and a pledge for personalized treatment of septic shock is made with a physiological base from available experimental and clinical evidence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hernandez G, Messina A, Kattan E. Invasive arterial pressure monitoring: much more than mean arterial pressure! Intensive Care Med. 2022;48(10):1495–7.

    PubMed  Google Scholar 

  2. Bakker J, Vincent JL. Effects of norepinephrine and dobutamine on oxygen transport and consumption in a dog model of endotoxic shock. Crit Care Med. 1993;21(3):425–32.

    CAS  PubMed  Google Scholar 

  3. Taveira da Silva AM, Kaulbach HC, Chuidian FS, Lambert DR, Suffredini AF, Danner RL. Shock and multiple organ dysfunction after selfadministration of salmonella endotoxin. N Engl J Med. 1993;328:1457–60.

    CAS  PubMed  Google Scholar 

  4. Van Deventer SJH, Buller HR, Ten Cate JW, Aarden LA, Hack CE, Sturk A. Experimental endotoxemia in humans: analysis of cytokine release and coagulation, fibrinolytic, and complement pathways. Blood. 1990;76(12):2520–6.

    PubMed  Google Scholar 

  5. Martich GD, Danner RL, Ceska M, Suffredini AF. Detection of interleukin 8 and tumor necrosis factor in normal humans after intravenous endotoxin: the effect of antiinflammatory agents. J Exp Med. 1991;173(4):1021–4.

    CAS  PubMed  Google Scholar 

  6. van Loon LM, Stolk RF, van der Hoeven JG, Veltink PH, Pickkers P, Lemson J, et al. Effect of vasopressors on the macro- and microcirculation during systemic inflammation in humans in vivo. Shock. 2020;53(2):171–4.

    PubMed  Google Scholar 

  7. Natanson C, Danner RL, Reilly JM, Doerfler ML, Hoffman WD, Akin GL, et al. Antibiotics versus cardiovascular support in a canine model of human septic shock. Am J Physiol. 1990;259(5 Pt 2):H1440–7.

    CAS  PubMed  Google Scholar 

  8. Evans L, Rhodes A, Alhazzani W, Antonelli M, Coopersmith CM, French C, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021. Intensive Care Med. 2021;47(11):1181–247.

    PubMed  PubMed Central  Google Scholar 

  9. Seymour CW, Gesten F, Prescott HC, Friedrich ME, Iwashyna TJ, Phillips GS, et al. Time to treatment and mortality during mandated emergency care for sepsis. N Engl J Med. 2017;376(23):2235–44.

    PubMed  PubMed Central  Google Scholar 

  10. Klein Klouwenberg PM, Cremer OL, van Vught LA, Ong DS, Frencken JF, Schultz MJ, et al. Likelihood of infection in patients with presumed sepsis at the time of intensive care unit admission: a cohort study. Crit Care. 2015;19:319.

    PubMed  PubMed Central  Google Scholar 

  11. Klompas M, Calandra T, Singer M. Antibiotics for sepsis-finding the equilibrium. JAMA. 2018;320(14):1433–4.

    PubMed  Google Scholar 

  12. Shankar-Hari M, Madsen MB, Turgeon AF. Immunoglobulins and sepsis. Intensive Care Med. 2018;44(11):1923–5.

    PubMed  Google Scholar 

  13. Koutroulis I, Batabyal R, McNamara B, Ledda M, Hoptay C, Freishtat RJ. Sepsis immunometabolism: from defining sepsis to understanding how energy production affects immune response. Crit Care Explor. 2019;1(11):e0061.

    PubMed  PubMed Central  Google Scholar 

  14. Bakker J, Grover R, McLuckie A, Holzapfel L, Andersson J, Lodato R, et al. Administration of the nitric oxide synthase inhibitor NG-methyl-L-arginine hydrochloride (546C88) by intravenous infusion for up to 72 hours can promote the resolution of shock in patients with severe sepsis: results of a randomized, double-blind, placebo-controlled multicenter study (study no. 144-002). Crit Care Med. 2004;32(1):1–12.

    CAS  PubMed  Google Scholar 

  15. Lopez A, Lorente JA, Steingrub J, Bakker J, McLuckie A, Willatts S, et al. Multiple-center, randomized, placebo-controlled, double-blind study of the nitric oxide synthase inhibitor 546C88: effect on survival in patients with septic shock. Crit Care Med. 2004;32(1):21–30.

    CAS  PubMed  Google Scholar 

  16. Perner A, Cecconi M, Cronhjort M, Darmon M, Jakob SM, Pettila V, et al. Expert statement for the management of hypovolemia in sepsis. Intensive Care Med. 2018;44(6):791–8.

    PubMed  Google Scholar 

  17. van Genderen ME, Klijn E, Lima A, de Jonge J, Visser SS, Voorbeijtel J, et al. Microvascular perfusion as a target for fluid resuscitation in experimental circulatory shock. Crit Care Med. 2014;42(2):E96–E105.

    PubMed  Google Scholar 

  18. Byrne L, Obonyo NG, Diab SD, Dunster KR, Passmore MR, Boon AC, et al. Unintended consequences; fluid resuscitation worsens shock in an ovine model of endotoxemia. Am J Respir Crit Care Med. 2018;198(8):1043–54.

    CAS  PubMed  Google Scholar 

  19. Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001;345(19):1368–77.

    CAS  PubMed  Google Scholar 

  20. van Beest PA, Hofstra JJ, Schultz MJ, Boerma EC, Spronk PE, Kuiper MA. The incidence of low venous oxygen saturation on admission to the intensive care unit: a multi-center observational study in the Netherlands. Crit Care. 2008;12(2):R33.

    PubMed  PubMed Central  Google Scholar 

  21. Thooft A, Favory R, Salgado DR, Taccone FS, Donadello K, De Backer D, et al. Effects of changes in arterial pressure on organ perfusion during septic shock. Crit Care. 2011;15(5):R222.

    PubMed  PubMed Central  Google Scholar 

  22. Pierrakos C, Velissaris D, Scolletta S, Heenen S, De Backer D, Vincent JL. Can changes in arterial pressure be used to detect changes in cardiac index during fluid challenge in patients with septic shock? Intensive Care Med. 2012;38(3):422–8.

    PubMed  Google Scholar 

  23. Dunser MW, Takala J, Brunauer A, Bakker J. Re-thinking resuscitation: leaving blood pressure cosmetics behind and moving forward to permissive hypotension and a tissue perfusion-based approach. Crit Care. 2013;17(5):326.

    PubMed  PubMed Central  Google Scholar 

  24. Asfar P, Meziani F, Hamel JF, Grelon F, Megarbane B, Anguel N, et al. High versus low blood-pressure target in patients with septic shock. N Engl J Med. 2014;370(17):1583–93.

    CAS  PubMed  Google Scholar 

  25. Patel BM, Chittock DR, Russell JA, Walley KR. Beneficial effects of short-term vasopressin infusion during severe septic shock. Anesthesiology. 2002;96(3):576–82.

    CAS  PubMed  Google Scholar 

  26. Fiorese Coimbra KT, de Freitas FGR, Bafi AT, Pinheiro TT, Nunes NF, de Azevedo LCP, et al. Effect of increasing blood pressure with noradrenaline on the microcirculation of patients with septic shock and previous arterial hypertension. Crit Care Med. 2019;47(8):1033–40.

    CAS  PubMed  Google Scholar 

  27. Lamontagne F, Richards-Belle A, Thomas K, Harrison DA, Sadique MZ, Grieve RD, et al. Effect of reduced exposure to vasopressors on 90-day mortality in older critically ill patients with vasodilatory hypotension: a randomized clinical trial. JAMA. 2020;323(10):938–49.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Hernandez G, Ospina-Tascon GA, Damiani LP, Estenssoro E, Dubin A, Hurtado J, et al. Effect of a resuscitation strategy targeting peripheral perfusion status vs serum lactate levels on 28-day mortality among patients with septic shock: the ANDROMEDA-SHOCK randomized clinical trial. JAMA. 2019;321(7):654–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Cain SM. Appearance of excess lactate in anesthetized dogs during anemic and hypoxic hypoxia. Am J Physiol. 1965;209(3):604–10.

    CAS  PubMed  Google Scholar 

  30. Ronco JJ, Fenwick JC, Tweeddale MG, Wiggs BR, Phang PT, Cooper DJ, et al. Identification of the critical oxygen delivery for anaerobic metabolism in critically ill septic and nonseptic humans. JAMA. 1993;270(14):1724–30.

    CAS  PubMed  Google Scholar 

  31. Zhang H, Vincent JL. Oxygen extraction is altered by endotoxin during tamponade-induced stagnant hypoxia in the dog. Circ Shock. 1993;40(3):168–76.

    CAS  PubMed  Google Scholar 

  32. Bakker J, Vincent J. The oxygen-supply dependency phenomenon is associated with increased blood lactate levels. J Crit Care. 1991;6(3):152–9.

    Google Scholar 

  33. Friedman G, De Backer D, Shahla M, Vincent JL. Oxygen supply dependency can characterize septic shock. Intensive Care Med. 1998;24(2):118–23.

    CAS  PubMed  Google Scholar 

  34. Cecconi M, De Backer D, Antonelli M, Beale R, Bakker J, Hofer C, et al. Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine. Intensive Care Med. 2014;40(12):1795–815.

    PubMed  PubMed Central  Google Scholar 

  35. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 2016;315(8):801–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Bakker J, Coffernils M, Leon M, Gris P, Vincent J. Blood lactate levels are superior to oxygen-derived variables in predicting outcome in human septic shock. Chest. 1991;99(4):956–62.

    CAS  PubMed  Google Scholar 

  37. Bakker J, Gris P, Coffernils M, Kahn R, Vincent J. Serial blood lactate levels can predict the development of multiple organ failure following septic shock. Am J Surg. 1996;171(2):221–6.

    CAS  PubMed  Google Scholar 

  38. Jansen TC, van Bommel J, Woodward R, Mulder PG, Bakker J. Association between blood lactate levels, sequential organ failure assessment subscores, and 28-day mortality during early and late intensive care unit stay: a retrospective observational study. Crit Care Med. 2009;37(8):2369–74.

    CAS  PubMed  Google Scholar 

  39. Jouffroy R, Leguillier T, Gilbert B, Tourtier JP, Bloch-Laine E, Ecollan P, et al. Prehospital lactate clearance is associated with reduced mortality in patients with septic shock. Am J Emerg Med. 2021;46:367–73.

    PubMed  Google Scholar 

  40. Jansen TC, van Bommel J, Schoonderbeek FJ, Visser SJS, van der Klooster JM, Lima AP, et al. Early lactate-guided therapy in intensive care unit patients a multicenter, open-label, randomized controlled trial. Am J Respir Crit Care Med. 2010;182(6):752–61.

    PubMed  Google Scholar 

  41. Vincent JL, Quintairos ESA, Couto L Jr, Taccone FS. The value of blood lactate kinetics in critically ill patients: a systematic review. Crit Care. 2016;20(1):257.

    PubMed  PubMed Central  Google Scholar 

  42. Zampieri FG, Damiani LP, Bakker J, Ospina-Tascon GA, Castro R, Cavalcanti AB, et al. Effects of a resuscitation strategy targeting peripheral perfusion status vs serum lactate levels among patients with septic shock: a Bayesian reanalysis of the ANDROMEDA-SHOCK trial. Am J Respir Crit Care Med. 2020;201(4):423–9.

    CAS  PubMed  Google Scholar 

  43. Gu WJ, Zhang Z, Bakker J. Early lactate clearance-guided therapy in patients with sepsis: a meta-analysis with trial sequential analysis of randomized controlled trials. Intensive Care Med. 2015;41(10):1862–3.

    PubMed  Google Scholar 

  44. Kattan E, Hernandez G, Ospina-Tascon G, Valenzuela ED, Bakker J, Castro R, et al. A lactate-targeted resuscitation strategy may be associated with higher mortality in patients with septic shock and normal capillary refill time: a post hoc analysis of the ANDROMEDA-SHOCK study. Ann Intensive Care. 2020;10(1):114.

    PubMed  PubMed Central  Google Scholar 

  45. Hernandez G, Bellomo R, Bakker J. The ten pitfalls of lactate clearance in sepsis. Intensive Care Med. 2019;45(1):82–5.

    PubMed  Google Scholar 

  46. Bakker J, de Backer D, Hernandez G. Lactate-guided resuscitation saves lives: we are not sure. Intensive Care Med. 2016;42(3):472–4.

    PubMed  Google Scholar 

  47. Alegria L, Vera M, Dreyse J, Castro R, Carpio D, Henriquez C, et al. A hypoperfusion context may aid to interpret hyperlactatemia in sepsis-3 septic shock patients: a proof-of-concept study. Ann Intensive Care. 2017;7(1):29.

    PubMed  PubMed Central  Google Scholar 

  48. Bakker J, Nijsten MW, Jansen TC. Clinical use of lactate monitoring in critically ill patients. Ann Intensive Care. 2013;3(1):12.

    PubMed  PubMed Central  Google Scholar 

  49. Marx G, Reinhart K. Venous oximetry. Curr Opin Crit Care. 2006;12(3):263–8.

    PubMed  Google Scholar 

  50. Rivers EP, Ander DS, Powell D. Central venous oxygen saturation monitoring in the critically ill patient. Curr Opin Crit Care. 2001;7(3):204–11.

    CAS  PubMed  Google Scholar 

  51. Walley KR. Use of central venous oxygen saturation to guide therapy. Am J Respir Crit Care Med. 2011;184(5):514–20.

    PubMed  Google Scholar 

  52. Bakker J, Vincent JL, Gris P, Leon M, Coffernils M, Kahn RJ. Veno-arterial carbon dioxide gradient in human septic shock. Chest. 1992;101(2):509–15.

    CAS  PubMed  Google Scholar 

  53. Zhang H, Vincent JL. Arteriovenous differences in PCO2 and pH are good indicators of critical hypoperfusion. Am Rev Respir Dis. 1993;148:867–71.

    CAS  PubMed  Google Scholar 

  54. Teboul JL, Mercat A, Lenique F, Berton C, Richard C. Value of the venous-arterial PCO2 gradient to reflect the oxygen supply to demand in humans: effects of dobutamine [see comments]. Crit Care Med. 1998;26(6):1007–10.

    CAS  PubMed  Google Scholar 

  55. Cuschieri J, Rivers EP, Donnino MW, Katilius M, Jacobsen G, Nguyen HB, et al. Central venous-arterial carbon dioxide difference as an indicator of cardiac index. Intensive Care Med. 2005;31(6):818–22.

    PubMed  Google Scholar 

  56. Ospina-Tascon GA, Umana M, Bermudez WF, Bautista-Rincon DF, Valencia JD, Madrinan HJ, et al. Can venous-to-arterial carbon dioxide differences reflect microcirculatory alterations in patients with septic shock? Intensive Care Med. 2016;42(2):211–21.

    CAS  PubMed  Google Scholar 

  57. Muller G, Mercier E, Vignon P, Henry-Lagarrigue M, Kamel T, Desachy A, et al. Prognostic significance of central venous-to-arterial carbon dioxide difference during the first 24 hours of septic shock in patients with and without impaired cardiac function. Br J Anaesth. 2017;119(2):239–48.

    CAS  PubMed  Google Scholar 

  58. Joly HR, Weil MH. Temperature of the great toe as an indication of the severity of shock. Circulation. 1969;39(1):131–8.

    CAS  PubMed  Google Scholar 

  59. Lima A, Bakker J. Clinical assessment of peripheral circulation. Curr Opin Crit Care. 2015;21(3):226–31.

    PubMed  Google Scholar 

  60. Ait-Oufella H, Lemoinne S, Boelle PY, Galbois A, Baudel JL, Lemant J, et al. Mottling score predicts survival in septic shock. Intensive Care Med. 2011;37(5):801–7.

    CAS  PubMed  Google Scholar 

  61. Hernandez G, Kattan E, Ospina-Tascon G, Bakker J, Castro R, ANDROMEDA-SHOCK Study Investigators and the Latin America Intensive Care Network (LIVEN), et al. Capillary refill time status could identify different clinical phenotypes among septic shock patients fulfilling Sepsis-3 criteria: a post hoc analysis of ANDROMEDA-SHOCK trial. Intensive Care Med. 2020;46(4):816–8.

    PubMed  Google Scholar 

  62. Brunauer A, Kokofer A, Bataar O, Gradwohl-Matis I, Dankl D, Bakker J, et al. Changes in peripheral perfusion relate to visceral organ perfusion in early septic shock: a pilot study. J Crit Care. 2016;35:105–9.

    PubMed  Google Scholar 

  63. Kattan E, Bakker J, Estenssoro E, Ospina-Tascon G, Biasi Cavalcanti A, De Backer D, et al. Hemodynamic phenotype-based, capillary refill time-targeted resuscitation in early septic shock: the ANDROMEDA-SHOCK-2 randomized clinical trial study protocol. Rev Bras Ter Intensiva. 2022;34(1):96–106.

    PubMed  PubMed Central  Google Scholar 

  64. Wittayachamnankul B, Chentanakij B, Sruamsiri K, Chattipakorn N. The role of central venous oxygen saturation, blood lactate, and central venous-to-arterial carbon dioxide partial pressure difference as a goal and prognosis of sepsis treatment. J Crit Care. 2016;36:223–9.

    PubMed  Google Scholar 

  65. Ait-Oufella H, Bakker J. Understanding clinical signs of poor tissue perfusion during septic shock. Intensive Care Med. 2016;42(12):2070–2.

    PubMed  Google Scholar 

  66. Cecconi M, Hofer C, Teboul JL, Pettila V, Wilkman E, Molnar Z, et al. Fluid challenges in intensive care: the FENICE study : a global inception cohort study. Intensive Care Med. 2015;41(9):1529–37.

    PubMed  PubMed Central  Google Scholar 

  67. Cecconi M, Hernandez G, Dunser M, Antonelli M, Baker T, Bakker J, et al. Fluid administration for acute circulatory dysfunction using basic monitoring: narrative review and expert panel recommendations from an ESICM task force. Intensive Care Med. 2019;45(1):21–32.

    PubMed  Google Scholar 

  68. Berlin DA, Bakker J. Understanding venous return. Intensive Care Med. 2014;40(10):1564–6.

    PubMed  Google Scholar 

  69. Guyton AC, Jones CE, Coleman TG. Circulatory physiology; cardiac output and its regulation. 2nd ed. Saunders; 1973.

    Google Scholar 

  70. Patterson SW, Starling EH. On the mechanical factors which determine the output of the ventricles. J Physiol. 1914;48(5):357–79.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Berlin DA, Bakker J. Starling curves and central venous pressure. Crit Care. 2015;19(1):55.

    PubMed  PubMed Central  Google Scholar 

  72. Vincent JL, Weil MH. Fluid challenge revisited. Crit Care Med. 2006;34(5):1333–7.

    PubMed  Google Scholar 

  73. Vellinga NA, Ince C, Boerma EC. Elevated central venous pressure is associated with impairment of microcirculatory blood flow in sepsis: a hypothesis generating post hoc analysis. BMC Anesthesiol. 2013;13:17.

    PubMed  PubMed Central  Google Scholar 

  74. Legrand M, Dupuis C, Simon C, Gayat E, Mateo J, Lukaszewicz AC, et al. Association between systemic hemodynamics and septic acute kidney injury in critically ill patients: a retrospective observational study. Crit Care. 2013;17(6):R278.

    PubMed  PubMed Central  Google Scholar 

  75. Boyd JH, Forbes J, Nakada TA, Walley KR, Russell JA. Fluid resuscitation in septic shock: a positive fluid balance and elevated central venous pressure are associated with increased mortality. Crit Care Med. 2011;39(2):259–65.

    PubMed  Google Scholar 

  76. Magder S, Bafaqeeh F. The clinical role of central venous pressure measurements. J Intensive Care Med. 2007;22(1):44–51.

    PubMed  Google Scholar 

  77. Magder S, Vanelli G. Circuit factors in the high cardiac output of sepsis. J Crit Care. 1996;11(4):155–66.

    CAS  PubMed  Google Scholar 

  78. Monge Garcia MI, Guijo Gonzalez P, Gracia Romero M, Gil Cano A, Oscier C, Rhodes A, et al. Effects of fluid administration on arterial load in septic shock patients. Intensive Care Med. 2015;41(7):1247–55.

    CAS  PubMed  Google Scholar 

  79. Garcia MI, Romero MG, Cano AG, Aya HD, Rhodes A, Grounds RM, et al. Dynamic arterial elastance as a predictor of arterial pressure response to fluid administration: a validation study. Crit Care. 2014;18(6):626.

    PubMed  PubMed Central  Google Scholar 

  80. Pinsky MR. Understanding preload reserve using functional hemodynamic monitoring. Intensive Care Med. 2015;41(8):1480–2.

    PubMed  PubMed Central  Google Scholar 

  81. Monnet X, Shi R, Teboul JL. Prediction of fluid responsiveness. What’s new? Ann Intensive Care. 2022;12(1):46.

    PubMed  PubMed Central  Google Scholar 

  82. van den Akker JPC, Bakker J, Groeneveld ABJ, den Uil CA. Risk indicators for acute kidney injury in cardiogenic shock. J Crit Care. 2019;50:11–6.

    PubMed  Google Scholar 

  83. Malbrain MLNG, Van Regenmortel N, Saugel B, De Tavernier B, Van Gaal PJ, Joannes-Boyau O, et al. Principles of fluid management and stewardship in septic shock: it is time to consider the four D’s and the four phases of fluid therapy. Ann Intensive Care. 2018;8(1):66.

    PubMed  PubMed Central  Google Scholar 

  84. Vincent JL, Cecconi M, De Backer D. The fluid challenge. Crit Care. 2020;24(1):703.

    PubMed  PubMed Central  Google Scholar 

  85. Guarracino F, Bertini P, Pinsky MR. Heterogeneity of cardiovascular response to standardized sepsis resuscitation. Crit Care. 2020;24(1):99.

    PubMed  PubMed Central  Google Scholar 

  86. Douglas IS, Alapat PM, Corl KA, Exline MC, Forni LG, Holder AL, et al. Fluid response evaluation in sepsis hypotension and shock: a randomized clinical trial. Chest. 2020;158(4):1431–45.

    PubMed  PubMed Central  Google Scholar 

  87. Kattan E, Ospina-Tascon GA, Teboul JL, Castro R, Cecconi M, Ferri G, et al. Systematic assessment of fluid responsiveness during early septic shock resuscitation: secondary analysis of the ANDROMEDA-SHOCK trial. Crit Care. 2020;24(1):23.

    PubMed  PubMed Central  Google Scholar 

  88. Ospina-Tascon GA, Hernandez G, Alvarez I, Calderon-Tapia LE, Manzano-Nunez R, Sanchez-Ortiz AI, et al. Effects of very early start of norepinephrine in patients with septic shock: a propensity score-based analysis. Crit Care. 2020;24(1):52.

    PubMed  PubMed Central  Google Scholar 

  89. Persichini R, Silva S, Teboul JL, Jozwiak M, Chemla D, Richard C, et al. Effects of norepinephrine on mean systemic pressure and venous return in human septic shock. Crit Care Med. 2012;40(12):3146–53.

    CAS  PubMed  Google Scholar 

  90. Hamzaoui O, Georger JF, Monnet X, Ksouri H, Maizel J, Richard C, et al. Early administration of norepinephrine increases cardiac preload and cardiac output in septic patients with life-threatening hypotension. Crit Care. 2010;14(4):R142.

    PubMed  PubMed Central  Google Scholar 

  91. Bennett VA, Vidouris A, Cecconi M. Effects of fluids on the macro- and microcirculations. Crit Care. 2018;22(1):74.

    PubMed  PubMed Central  Google Scholar 

  92. Acheampong A, Vincent JL. A positive fluid balance is an independent prognostic factor in patients with sepsis. Crit Care. 2015;19:251.

    PubMed  PubMed Central  Google Scholar 

  93. Barthelemy R, Kindermans M, Delval P, Collet M, Gaugain S, Cecconi M, et al. Accuracy of cumulative volumes of fluid challenge to assess fluid responsiveness in critically ill patients with acute circulatory failure: a pharmacodynamic approach. Br J Anaesth. 2022;128(2):236–43.

    CAS  PubMed  Google Scholar 

  94. Meyhoff TS, Hjortrup PB, Wetterslev J, Sivapalan P, Laake JH, Cronhjort M, et al. Restriction of intravenous fluid in ICU patients with septic shock. N Engl J Med. 2022;386(26):2459–70.

    CAS  PubMed  Google Scholar 

  95. Schenk J, van der Ven WH, Schuurmans J, Roerhorst S, Cherpanath TGV, Lagrand WK, et al. Definition and incidence of hypotension in intensive care unit patients, an international survey of the European Society of Intensive Care Medicine. J Crit Care. 2021;65:142–8.

    CAS  PubMed  Google Scholar 

  96. van der Ven WH, Schuurmans J, Schenk J, Roerhorst S, Cherpanath TGV, Lagrand WK, et al. Monitoring, management, and outcome of hypotension in intensive care unit patients, an international survey of the European Society of Intensive Care Medicine. J Crit Care. 2022;67:118–25.

    PubMed  Google Scholar 

  97. Leone M, Asfar P, Radermacher P, Vincent JL, Martin C. Optimizing mean arterial pressure in septic shock: a critical reappraisal of the literature. Crit Care. 2015;19(1):794.

    Google Scholar 

  98. Kato R, Pinsky MR. Personalizing blood pressure management in septic shock. Ann Intensive Care. 2015;5(1):41.

    PubMed  PubMed Central  Google Scholar 

  99. Bosch NA, Teja B, Wunsch H, Walkey AJ. Practice patterns in the initiation of secondary vasopressors and adjunctive corticosteroids during septic shock in the United States. Ann Am Thorac Soc. 2021;18(12):2049–57.

    PubMed  PubMed Central  Google Scholar 

  100. Martin C, Saux P, Eon B, Aknin P, Gouin F. Septic shock: a goal-directed therapy using volume loading, dobutamine and/or norepinephrine. Acta Anaesthesiol Scand. 1990;34(5):413–7.

    CAS  PubMed  Google Scholar 

  101. Martin C, Papazian L, Perrin G, Saux P, Gouin F. Norepinephrine or dopamine for the treatment of hyperdynamic septic shock? Chest. 1993;103(6):1826–31.

    CAS  PubMed  Google Scholar 

  102. Schreuder WO, Schneider AJ, Groeneveld ABJ, Thijs LG. Effect of dopamine vs norepinephrine on hemodynamics in septic shock. Emphasis on right ventricular performance. Chest. 1989;95(6):1282–8.

    CAS  PubMed  Google Scholar 

  103. Martin C, Eon B, Saux P, Aknin P, Gouin F. Renal effects of norepinephrine used to treat septic shock patients. Crit Care Med. 1990;18(3):282–5.

    CAS  PubMed  Google Scholar 

  104. Meadows D, Edwards JD, Wilkins RG, Nightingale P. Reversal of intractable septic shock with norepinephrine therapy. Crit Care Med. 1988;16(7):663–6.

    CAS  PubMed  Google Scholar 

  105. Desjars P, Pinaud M, Potel G, Tasseau F, Touze MD. A reappraisal of norepinephrine therapy in human septic shock. Crit Care Med. 1987;15(2):134–7.

    CAS  PubMed  Google Scholar 

  106. Fukuoka T, Nishimura M, Imanaka H, Taenaka N, Yoshiya I, Takezawa J. Effects of norepinephrine on renal function in septic patients with normal and elevated serum lactate levels. Crit Care Med. 1989;17(11):1104–7.

    CAS  PubMed  Google Scholar 

  107. Hesselvik JF, Brodin B. Low dose norepinephrine in patients with septic shock and oliguria: effects on afterload, urine flow and oxygen transport. Crit Care Med. 1989;17:179–80.

    CAS  PubMed  Google Scholar 

  108. Martin C, Viviand X, Arnaud S, Vialet R, Rougnon T. Effects of norepinephrine plus dobutamine or norepinephrine alone on left ventricular performance of septic shock patients. Crit Care Med. 1999;27(9):1708–13.

    CAS  PubMed  Google Scholar 

  109. Martin C, Perrin G, Saux P, Papazian L, Gouin F. Effects of norepinephrine on right ventricular function in septic shock patients. Intensive Care Med. 1994;20(6):444–7.

    CAS  PubMed  Google Scholar 

  110. Redl-Wenzl EM, Armbruster C, Edelmann G, Fischl E, Kolacny M, Wechsler-Fîrdîs A, et al. The effects of norepinephrine on hemodynamics and renal function in severe septic shock states. Intensive Care Med. 1993;19(3):151–4.

    CAS  PubMed  Google Scholar 

  111. Marik PE, Mohedin M. The contrasting effects of dopamine and norepinephrine on systemic and splanchnic oxygen utilization in hyperdynamic sepsis. JAMA. 1994;272:1354–7.

    CAS  PubMed  Google Scholar 

  112. Law AC, Bosch NA, Peterson D, Walkey AJ. Comparison of heart rate after phenylephrine versus norepinephrine initiation in patients with septic shock and atrial fibrillation. Chest. 2022;162(4):796–803.

    CAS  PubMed  Google Scholar 

  113. Khanna A, English SW, Wang XS, Ham K, Tumlin J, Szerlip H, et al. Angiotensin II for the treatment of vasodilatory shock. N Engl J Med. 2017;377(5):419–30.

    CAS  PubMed  Google Scholar 

  114. Espinoza EDV, Hernandez G, Bakker J. Norepinephrine, more than a vasopressor. Ann Transl Med. 2019;7(S1):S25.

    PubMed  PubMed Central  Google Scholar 

  115. Dubin A, Pozo MO, Casabella CA, Palizas F Jr, Murias G, Moseinco MC, et al. Increasing arterial blood pressure with norepinephrine does not improve microcirculatory blood flow: a prospective study. Crit Care. 2009;13(3):R92.

    PubMed  PubMed Central  Google Scholar 

  116. Vail E, Gershengorn HB, Hua M, Walkey AJ, Rubenfeld G, Wunsch H. Association between US norepinephrine shortage and mortality among patients with septic shock. JAMA. 2017;317(14):1433–42.

    PubMed  Google Scholar 

  117. Gordon AC, Mason AJ, Thirunavukkarasu N, Perkins GD, Cecconi M, Cepkova M, et al. Effect of early vasopressin vs norepinephrine on kidney failure in patients with septic shock: the VANISH randomized clinical trial. JAMA. 2016;316(5):509–18.

    CAS  PubMed  Google Scholar 

  118. Russell JA, Walley KR, Singer J, Gordon AC, Hebert PC, Cooper DJ, et al. Vasopressin versus norepinephrine infusion in patients with septic shock. N Engl J Med. 2008;358(9):877–87.

    CAS  PubMed  Google Scholar 

  119. Nagendran M, Russell JA, Walley KR, Brett SJ, Perkins GD, Hajjar L, et al. Vasopressin in septic shock: an individual patient data meta-analysis of randomised controlled trials. Intensive Care Med. 2019;45(6):844–55.

    CAS  PubMed  Google Scholar 

  120. Liu ZM, Chen J, Kou Q, Lin Q, Huang X, Tang Z, et al. Terlipressin versus norepinephrine as infusion in patients with septic shock: a multicentre, randomised, double-blinded trial. Intensive Care Med. 2018;44(11):1816–25.

    CAS  PubMed  Google Scholar 

  121. Laterre PF, Berry SM, Blemings A, Carlsen JE, Francois B, Graves T, et al. Effect of selepressin vs placebo on ventilator- and vasopressor-free days in patients with septic shock: the SEPSIS-ACT randomized clinical trial. JAMA. 2019;322(15):1476–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Rebet O, Andremont O, Gerard JL, Fellahi JL, Hanouz JL, Fischer MO. Preload dependency determines the effects of phenylephrine on cardiac output in anaesthetised patients: a prospective observational study. Eur J Anaesthesiol. 2016;33(9):638–44.

    CAS  PubMed  Google Scholar 

  123. Patel VV, Sullivan JB, Cavanaugh J. Analysis of mortality in patients treated with phenylephrine in septic shock. J Pharm Pract. 2021:8971900211000218.

    Google Scholar 

  124. Hawn JM, Bauer SR, Yerke J, Li M, Wang X, Reddy AJ, et al. Effect of phenylephrine push before continuous infusion norepinephrine in patients with septic shock. Chest. 2021;159(5):1875–83.

    CAS  PubMed  Google Scholar 

  125. Bellomo R, Forni LG, Busse LW, McCurdy MT, Ham KR, Boldt DW, et al. Renin and survival in patients given angiotensin II for catecholamine-resistant vasodilatory shock. A clinical trial. Am J Respir Crit Care Med. 2020;202(9):1253–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Tumlin JA, Murugan R, Deane AM, Ostermann M, Busse LW, Ham KR, et al. Outcomes in patients with vasodilatory shock and renal replacement therapy treated with intravenous angiotensin II. Crit Care Med. 2018;46(6):949–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Hosseinian L, Weiner M, Levin MA, Fischer GW. Methylene blue: magic bullet for vasoplegia? Anesth Analg. 2016;122(1):194–201.

    CAS  PubMed  Google Scholar 

  128. Bellissant E, Annane D. Effect of hydrocortisone on phenylephrine—mean arterial pressure dose- response relationship in septic shock. Clin Pharmacol Ther. 2000;68(3):293–303.

    CAS  PubMed  Google Scholar 

  129. Annane D, Sebille V, Troche G, Raphael JC, Gajdos P, Bellissant E. A 3-level prognostic classification in septic shock based on cortisol levels and cortisol response to corticotropin. JAMA. 2000;283(8):1038–45.

    CAS  PubMed  Google Scholar 

  130. Rochwerg B, Oczkowski SJ, Siemieniuk RAC, Agoritsas T, Belley-Cote E, D’Aragon F, et al. Corticosteroids in sepsis: an updated systematic review and meta-analysis. Crit Care Med. 2018;46(9):1411–20.

    CAS  PubMed  Google Scholar 

  131. Volbeda M, Wetterslev J, Gluud C, Zijlstra JG, van der Horst IC, Keus F. Glucocorticosteroids for sepsis: systematic review with meta-analysis and trial sequential analysis. Intensive Care Med. 2015;41(7):1220–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Vieillard-Baron A. Septic cardiomyopathy. Ann Intensive Care. 2011;1(1):6.

    PubMed  PubMed Central  Google Scholar 

  133. Vincent JL, Sakr Y, Sprung CL, Ranieri VM, Reinhart K, Gerlach H, et al. Sepsis in European intensive care units: results of the SOAP study. Crit Care Med. 2006;34(2):344–53.

    PubMed  Google Scholar 

  134. Vincent JL, Roman A, De Backer D, Kahn RJ. Oxygen uptake/supply dependency. Effects of short-term dobutamine infusion. Am J Respir Crit Care Med. 1990;142(1):2–7.

    CAS  Google Scholar 

  135. De Backer D, Moraine JJ, Berre J, Kahn RJ, Vincent JL. Effects of dobutamine on oxygen consumption in septic patients. Direct versus indirect determinations. Am J Respir Crit Care Med. 1994;150(1):95–100.

    PubMed  Google Scholar 

  136. Geri G, Vignon P, Aubry A, Fedou AL, Charron C, Silva S, et al. Cardiovascular clusters in septic shock combining clinical and echocardiographic parameters: a post hoc analysis. Intensive Care Med. 2019;45(5):657–67.

    PubMed  Google Scholar 

  137. Joly LM, Monchi M, Cariou A, Chiche JD, Bellenfant F, Brunet F, et al. Effects of dobutamine on gastric mucosal perfusion and hepatic metabolism in patients with septic shock. Am J Respir Crit Care Med. 1999;160:1983–6.

    CAS  PubMed  Google Scholar 

  138. Price K, Clark C, Gutierrez G. Intravenous dobutamine improves gastric intramucosal pH in septic patients. Am Rev Respir Dis. 1992;145:A316.

    Google Scholar 

  139. Reinelt H, Radermacher P, Fischer G, Geisser W, Wachter U, Wiedeck H, et al. Effects of a dobutamine-induced increase in splanchnic blood flow on hepatic metabolic activity in patients with septic shock. Anesthesiology. 1997;86(4):818–24.

    CAS  PubMed  Google Scholar 

  140. Hernandez G, Bruhn A, Luengo C, Regueira T, Kattan E, Fuentealba A, et al. Effects of dobutamine on systemic, regional and microcirculatory perfusion parameters in septic shock: a randomized, placebo-controlled, double-blind, crossover study. Intensive Care Med. 2013;39(8):1435–43.

    CAS  PubMed  Google Scholar 

  141. De Backer D, Creteur J, Dubois MJ, Sakr Y, Koch M, Verdant C, et al. The effects of dobutamine on microcirculatory alterations in patients with septic shock are independent of its systemic effects. Crit Care Med. 2006;34(2):403–8.

    PubMed  Google Scholar 

  142. Vieillard-Baron A, Caille V, Charron C, Belliard G, Page B, Jardin F. Actual incidence of global left ventricular hypokinesia in adult septic shock. Crit Care Med. 2008;36(6):1701–6.

    PubMed  Google Scholar 

  143. Belletti A, Benedetto U, Biondi-Zoccai G, Leggieri C, Silvani P, Angelini GD, et al. The effect of vasoactive drugs on mortality in patients with severe sepsis and septic shock. A network meta-analysis of randomized trials. J Crit Care. 2017;37:91–8.

    CAS  PubMed  Google Scholar 

  144. Potter EK, Hodgson L, Creagh-Brown B, Forni LG. Manipulating the microcirculation in sepsis - the impact of vasoactive medications on microcirculatory blood flow: a systematic review. Shock. 2019;52(1):5–12.

    PubMed  Google Scholar 

  145. Fries M, Ince C, Rossaint R, Bleilevens C, Bickenbach J, Rex S, et al. Levosimendan but not norepinephrine improves microvascular oxygenation during experimental septic shock. Crit Care Med. 2008;36(6):1886–91.

    CAS  PubMed  Google Scholar 

  146. Morelli A, Donati A, Ertmer C, Rehberg S, Lange M, Orecchioni A, et al. Levosimendan for resuscitating the microcirculation in patients with septic shock: a randomized controlled study. Crit Care. 2010;14(6):R232.

    PubMed  PubMed Central  Google Scholar 

  147. Schmidt W, Tinelli M, Secchi A, Gebhard MM, Martin E, Schmidt H. Milrinone improves intestinal villus blood flow during endotoxemia. Can J Anaesth. 2000;47(7):673–9.

    CAS  PubMed  Google Scholar 

  148. de Miranda ML, Pereira SJ, Santos AO, Villela NR, Kraemer-Aguiar LG, Bouskela E. Milrinone attenuates arteriolar vasoconstriction and capillary perfusion deficits on endotoxemic hamsters. PLoS One. 2015;10(2):e0117004.

    PubMed  PubMed Central  Google Scholar 

  149. Ospina-Tascon GA, Calderon-Tapia LE. Inodilators in septic shock: should these be used? Ann Transl Med. 2020;8(12):796.

    PubMed  PubMed Central  Google Scholar 

  150. Rehberg S, Ertmer C, Vincent JL, Spiegel HU, Kohler G, Erren M, et al. Effects of combined arginine vasopressin and levosimendan on organ function in ovine septic shock. Crit Care Med. 2010;38(10):2016–23.

    CAS  PubMed  Google Scholar 

  151. Gordon AC, Perkins GD, Singer M, McAuley DF, Orme RM, Santhakumaran S, et al. Levosimendan for the prevention of acute organ dysfunction in sepsis. N Engl J Med. 2016;375(17):1638–48.

    CAS  PubMed  Google Scholar 

  152. Stolk RF, van der Pasch E, Naumann F, Schouwstra J, Bressers S, van Herwaarden AE, et al. Norepinephrine dysregulates the immune response and compromises host defense during sepsis. Am J Respir Crit Care Med. 2020;202(6):830–42.

    CAS  PubMed  Google Scholar 

  153. Stolk RF, van der Poll T, Angus DC, van der Hoeven JG, Pickkers P, Kox M. Potentially inadvertent immunomodulation: norepinephrine use in sepsis. Am J Respir Crit Care Med. 2016;194(5):550–8.

    CAS  PubMed  Google Scholar 

  154. Cioccari L, Luethi N, Bailey M, Shehabi Y, Howe B, Messmer AS, et al. The effect of dexmedetomidine on vasopressor requirements in patients with septic shock: a subgroup analysis of the sedation practice in intensive care evaluation [SPICE III] trial. Crit Care. 2020;24(1):441.

    PubMed  PubMed Central  Google Scholar 

  155. Hernandez G, Tapia P, Alegria L, Soto D, Luengo C, Gomez J, et al. Effects of dexmedetomidine and esmolol on systemic hemodynamics and exogenous lactate clearance in early experimental septic shock. Crit Care. 2016;20(1):234.

    PubMed  PubMed Central  Google Scholar 

  156. Miyamoto K, Nakashima T, Shima N, Kato S, Ueda K, Kawazoe Y, et al. Effect of dexmedetomidine on lactate clearance in patients with septic shock: a subanalysis of a Multicenter randomized controlled trial. Shock. 2018;50(2):162–6.

    CAS  PubMed  Google Scholar 

  157. Orbegozo Cortes D, Njimi H, Dell'Anna AM, Taccone FS. Esmolol for septic shock: more than just heart rate control? Minerva Anestesiol. 2014;80(2):254–8.

    CAS  PubMed  Google Scholar 

  158. Morelli A, Ertmer C, Westphal M, Rehberg S, Kampmeier T, Ligges S, et al. Effect of heart rate control with esmolol on hemodynamic and clinical outcomes in patients with septic shock: a randomized clinical trial. JAMA. 2013;310(16):1683–91.

    PubMed  Google Scholar 

  159. Kawazoe Y, Miyamoto K, Morimoto T, Yamamoto T, Fuke A, Hashimoto A, et al. Effect of dexmedetomidine on mortality and ventilator-free days in patients requiring mechanical ventilation with sepsis: a randomized clinical trial. JAMA. 2017;317(13):1321–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Levy B, Fritz C, Piona C, Duarte K, Morelli A, Guerci P, et al. Hemodynamic and anti-inflammatory effects of early esmolol use in hyperkinetic septic shock: a pilot study. Crit Care. 2021;25(1):21.

    PubMed  PubMed Central  Google Scholar 

  161. Jacquet-Lagreze M, Allaouchiche B, Restagno D, Paquet C, Ayoub JY, Etienne J, et al. Gut and sublingual microvascular effect of esmolol during septic shock in a porcine model. Crit Care. 2015;19:241.

    PubMed  PubMed Central  Google Scholar 

  162. Venkataraman R, Subramanian S, Kellum JA. Clinical review: extracorporeal blood purification in severe sepsis. Crit Care. 2003;7(2):139–45.

    PubMed  PubMed Central  Google Scholar 

  163. Stahl K, Wendel-Garcia PD, Bode C, David S. Unraveling the secret of re-balancing homeostasis in sepsis: a critical view on extracorporeal blood purification modalities. Intensive Care Med. 2022;48(1):130–2.

    PubMed  Google Scholar 

  164. Pickkers P, Payen D. What’s new in the extracorporeal treatment of sepsis? Intensive Care Med. 2017;43(10):1498–500.

    PubMed  PubMed Central  Google Scholar 

  165. Bakker J, Kattan E, Annane D, Castro R, Cecconi M, De Backer D, et al. Current practice and evolving concepts in septic shock resuscitation. Intensive Care Med. 2022;48(2):148–63.

    PubMed  Google Scholar 

  166. Einav S, Helviz Y, Ippolito M, Cortegiani A. Vasopressor and inotrope treatment for septic shock: an umbrella review of reviews. J Crit Care. 2021;65:65–71.

    CAS  PubMed  Google Scholar 

  167. Vincent JL, Singer M, Einav S, Moreno R, Wendon J, Teboul JL, et al. Equilibrating SSC guidelines with individualized care. Crit Care. 2021;25:397.

    PubMed  PubMed Central  Google Scholar 

  168. Scheeren TWL, Bakker J, Kaufmann T, Annane D, Asfar P, Boerma EC, et al. Current use of inotropes in circulatory shock. Ann Intensive Care. 2021;11(1):21.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Bakker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bakker, J. (2023). Septic Shock. In: Molnar, Z., Ostermann, M., Shankar-Hari, M. (eds) Management of Dysregulated Immune Response in the Critically Ill. Lessons from the ICU. Springer, Cham. https://doi.org/10.1007/978-3-031-17572-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-17572-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-17571-8

  • Online ISBN: 978-3-031-17572-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics