Skip to main content

New Trends in Surgical Education and Mentoring by Immersive Virtual Reality: An Innovative Tool for Patient’s Safety

  • Chapter
  • First Online:
The High-risk Surgical Patient

Abstract

Surgical training has always been challenging as it requires anatomy knowledge, technical ability, and proficiency in many psychomotor, cognitive, and problem-solving skills. In recent times the dropout of candidates, the shortage of economic resources, and the restrictive working hours have raised the bar even higher. New methods have been explored to overcome these issues, with a special interest in immersive virtual reality (IVR), a technology recently introduced in surgery that allows the user to dive into a completely virtual world and interact with it. Thanks to its engaging experience, IVR seems to improve surgical skills and facilitate exposure to complex procedures. On the other hand, the possibility to freely navigate a high-fidelity reconstruction of the patient’s anatomy can help expert surgeons as well, easing surgical planning and improving the accuracy and safety of surgery.

In this chapter, historical background and technical overview of IVR are provided, followed by a review of the results obtained so far from the application of this technology in surgical education and preoperative planning. Drawbacks and limitations of IVR are discussed as well. In the final section, the Authors present their experience in developing an IVR tool and implementing it in various educational and surgical activities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Catena F, Biffl W, De Simone B, Sartelli M, Di Saverio S, Kluger Y, et al. Emergency general surgeons: the special forces of general surgery (the “navy seals paradigm”). World J Emerg Surg [Internet]. 2020;15(1):11. https://wjes.biomedcentral.com/articles/10.1186/s13017-020-0293-7.

  2. Schwartz SI, Galante J, Kaji A, Dolich M, Easter D, Melcher ML, et al. Effect of the 16-hour work limit on general surgery intern operative case volume. JAMA Surg [Internet]. 2013 [cited 2020 Nov 30];148(9):829. http://archsurg.jamanetwork.com/article.aspx?doi=10.1001/jamasurg.2013.2677.

  3. Sevenoaks H, Ajwani S, Hujazi I, Sergeant J, Woodruff M, Barrie J, et al. Shift working reduces operative experience for trauma and orthopaedic higher surgical trainees: a UK multicentre study. Ann R Coll Surg Engl. 2019;101(3):197–202.

    Article  CAS  PubMed  Google Scholar 

  4. Jamal MH, Doi SAR, Rousseau M, Edwards M, Rao C, Barendregt JJ, et al. A systematic review of the effects of resident duty hour restrictions in surgery: impact on resident wellness, training, and patient outcomes. Ann Surg [Internet]. 2014;259(6):1041–53. http://doi.wiley.com/10.1002/bjs.8657.

  5. Coleman JJ, Esposito TJ, Rozycki GS, Feliciano DV. Early subspecialization and perceived competence in surgical training: are residents ready? J Am Coll Surg. 2013;216(4):764–71; discussion 771–3.

    Article  PubMed  Google Scholar 

  6. Mattar SG, Alseidi AA, Jones DB, Jeyarajah DR, Swanstrom LL, Aye RW, et al. General surgery residency inadequately prepares trainees for fellowship: results of a survey of fellowship program directors. Ann Surg. 2013;258(3):440–7.

    Article  PubMed  Google Scholar 

  7. McKenna DT, Mattar SG. What is wrong with the training of general surgery? Adv Surg [Internet]. 2014;48(1):201–10. https://doi.org/10.1016/j.yasu.2014.05.010.

  8. Vinden C, Malthaner R, McGee J, McClure JA, Winick-Ng J, Liu K, et al. Teaching surgery takes time: the impact of surgical education on time in the operating room. Can J Surg [Internet]. 2016 [cited 2020 Nov 30];59(2):87–92. /pmc/articles/PMC4814276/?report=abstract.

    Google Scholar 

  9. Tanos V, Socolov R, Demetriou P, Kyprianou M, Watrelot A, Van Belle Y, et al. Implementation of minimal invasive gynaecological surgery certification will challenge gynaecologists with new legal and ethical issues. Facts Views Vis Obgyn. 2016;8(2):111–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Feanny MA, Scott BG, Mattox KL, Hirshberg A. Impact of the 80-hour work week on resident emergency operative experience. Am J Surg. 2005;190(6):947–9.

    Article  PubMed  Google Scholar 

  11. Jamal MH, Doi SAR, Rousseau M, Edwards M, Rao C, Barendregt JJ, et al. Systematic review and meta-analysis of the effect of North American working hours restrictions on mortality and morbidity in surgical patients. Br J Surg [Internet]. 2012;99(3):336–44. http://doi.wiley.com/10.1002/bjs.8657.

  12. Care of the elderly patient. J Hosp Med [Internet]. 2006;1(S1):60–1. http://www.journalofhospitalmedicine.com/jhospmed/article/128468/care-elderly-patient.

  13. Cooper Z, Scott JW, Rosenthal RA, Mitchell SL. Emergency major abdominal surgical procedures in older adults: a systematic review of mortality and functional outcomes. J Am Geriatr Soc. 2015;63(12):2563–71.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Castillo-Angeles M, Cooper Z, Jarman MP, Sturgeon D, Salim A, Havens JM. Association of frailty with morbidity and mortality in emergency general surgery by procedural risk level. JAMA Surg [Internet]. 2020;220(2):448–53. https://linkinghub.elsevier.com/retrieve/pii/S0002961019315739.

  15. Owen H. Early use of simulation in medical education. Simul Healthc. 2012;7(2):102–16.

    Article  PubMed  Google Scholar 

  16. Carey JN, Rommer E, Sheckter C, Minneti M, Talving P, Wong AK, et al. Simulation of plastic surgery and microvascular procedures using perfused fresh human cadavers. J Plast Reconstr Aesthetic Surg [Internet]. 2014 [cited 2020 Dec 2];67(2). https://pubmed-ncbi-nlm-nih-gov.pros.lib.unimi.it/24094541/.

  17. Grabo D, Bardes J, Sharon M, Borgstrom D. Initial report on the impact of a perfused fresh cadaver training program in general surgery resident trauma education. Am J Surg [Internet]. 2020 [cited 2020 Dec 3]. 109–13. https://pubmed.ncbi.nlm.nih.gov/31672305/.

  18. Alken A, Luursema JM, Weenk M, Yauw S, Fluit C, van Goor H. Integrating technical and non-technical skills coaching in an acute trauma surgery team training: is it too much? Am J Surg. 2018;216(2):369–74.

    Article  PubMed  Google Scholar 

  19. Simmerman E, Simmerman A, Lassiter R, King R, Ham B, Adam BL, et al. Feasibility and benefit of incorporating a multimedia cadaver laboratory training program into a didactics curriculum for junior and senior surgical residents. J Surg Educ. 2018;75(5):1188–94.

    Article  PubMed  Google Scholar 

  20. Kim SC, Fisher JG, Delman KA, Hinman JM, Srinivasan JK. Cadaver-based simulation increases resident confidence, initial exposure to fundamental techniques, and may augment operative autonomy. J Surg Educ. 2016;73:e33–41.

    Google Scholar 

  21. Reznick RK, MacRae H. Teaching surgical skills—changes in the wind. N Engl J Med. 2006;355(25):2664–9.

    Article  CAS  PubMed  Google Scholar 

  22. Kovacs G, Levitan R, Sandeski R. Clinical cadavers as a simulation resource for procedural learning. Promes SB, editor. AEM Educ Train [Internet]. 2018 [cited 2020 Dec 4];2(3):239–47. http://doi.wiley.com/10.1002/aet2.10103.

  23. Pawlowski J, Feinstein D, Crandall ML, Gala S. Modernizing biomedical training: replacing live animal laboratories with human simulation. In: Animal experimentation: working towards a paradigm change [internet]. BRILL; 2019 [cited 2020 Dec 4]. p. 551–66. https://brill.com/view/book/edcoll/9789004391192/BP000028.xml.

  24. Sarker SK, Patel B. Simulation and surgical training. Int J Clin Pract [Internet]. 2007 Oct 19;61(12):2120–5. https://onlinelibrary.wiley.com/doi/10.1111/j.1742-1241.2007.01435.x.

  25. Halvorsen FH, Elle OJ, Fosse E. Simulators in surgery. Minim Invasive Ther Allied Technol [Internet]. 2005;14(4–5):214–223. http://www.tandfonline.com/doi/full/10.1080/13645700500243869.

  26. Dastur N. Technical notes and tips: DIY surgical knot-tying tool. Ann R Coll Surg Engl [Internet]. 2009 [cited 2021 Jul 6];91(3):268. /pmc/articles/PMC2765024/.

    Google Scholar 

  27. Denadai R, Souto LRM. Organic bench model to complement the teaching and learning on basic surgical skills. Acta Cir Bras [Internet]. 2012 [cited 2021 Jul 6];27(1):88–94. https://pubmed.ncbi.nlm.nih.gov/22159445/.

  28. Chong ACM, Pate RC, Prohaska DJ, Bron TR, Wooley PH. Validation of improvement of basic competency in arthroscopic knot tying using a bench top simulator in orthopaedic residency education. Arthrosc J Arthrosc Relat Surg [Internet]. 2016 [cited 2021 Jul 6];32(7):1389–99. http://www.arthroscopyjournal.org/article/S0749806316001110/fulltext.

  29. Silva RR, Lourenção A Jr., Goncharov M, Jatene FB. Low cost simulator for heart surgery training. Braz J Cardiovasc Surg [Internet]. 2016 [cited 2021 Jul 6];31(6):449. https://doi.org/10.5935/1678-9741.20160089.

  30. Higgins M, Madan CR, Patel R. Deliberate practice in simulation-based surgical skills training: a scoping review. J Surg Educ. 2021;78(4):1328–39.

    Article  PubMed  Google Scholar 

  31. Scott DJ, Bergen PC, Rege RV, Laycock R, Tesfay ST, Valentine RJ, et al. Laparoscopic training on bench models: better and more cost effective than operating room experience? J Am Coll Surg. 2000;191(3):272–83.

    Article  CAS  PubMed  Google Scholar 

  32. Brown RF, Tignanelli C, Grudziak J, Summerlin-Long S, Laux J, Kiser A, et al.; Association for Academic Surgery. A comparison of a homemade central line simulator to commercial models. J Surg Res [Internet]. 2017 [cited 2021 Jul 6];214:203–8. https://doi.org/10.1016/j.jss.2017.02.071

  33. Katayama A, Nakazawa H, Tokumine J, Lefor AK, Watanabe K, Asao T, et al. A high-fidelity simulator for needle cricothyroidotomy training is not associated with increased proficiency compared with conventional simulators: a randomized controlled study. Medicine (Baltimore) [Internet]. 2019 [cited 2021 Jul 6];98(8):e14665. /pmc/articles/PMC6408010/.

    Google Scholar 

  34. Quick JA. Simulation training in trauma. Mo Med [Internet]. 2018 [cited 2021 Jul 6];115(5):447. /pmc/articles/PMC6205286/.

    Google Scholar 

  35. Stefanidis D, Aggarwal R, Rush RM, Lee G, Blair PG, Hananel D, et al. Advanced modular manikin and surgical team experience during a trauma simulation: results of a single-blinded randomized trial. J Am Coll Surg [Internet]. 2021 [cited 2021 Jul 6];233(2):249–260.e2. http://www.journalacs.org/article/S1072751521003434/fulltext.

  36. Schreuder H, Wolswijk R, Zweemer RP, Schijven MP, Verheijen R. Training and learning robotic surgery, time for a more structured approach: a systematic review. 2012 [cited 2021 Jul 13]. www.bjog.org.

  37. Sridhar AN, Briggs TP, Kelly JD, Nathan S. Training in robotic surgery—an overview. Curr Urol Reports 2017 188 [Internet]. 2017 [cited 2021 Jul 13];18(8):1–8. https://link.springer.com/article/10.1007/s11934-017-0710-y.

  38. Hertz AM, George EI, Vaccaro CM, Brand TC. Head-to-head comparison of three virtual-reality robotic surgery simulators. JSLS J Soc Laparoendosc Surg [Internet]. 2018 [cited 2021 Jul 13];22(1). /pmc/articles/PMC5863693/.

    Google Scholar 

  39. Virtual reality. In: Oxford advanced learner’s dictionary. 2019th ed. Oxford University Press; 2019.

    Google Scholar 

  40. Khor WS, Baker B, Amin K, Chan A, Patel K, Wong J. Augmented and virtual reality in surgery—the digital surgical environment: applications, limitations and legal pitfalls. Ann Transl Med [Internet]. 2016;4(23):454–454. http://atm.amegroups.com/article/view/12851/13264.

  41. Chatzopoulos D, Bermejo C, Huang Z, Hui P. Mobile augmented reality survey: from where we are to where we go. IEEE Access [Internet]. 2017;5:6917–50. http://ieeexplore.ieee.org/document/7912316/.

  42. Microsoft. HoloLens [Internet]. [cited 2020 Feb 1]. https://www.microsoft.com/it-it/hololens.

  43. Rauschnabel PA, Ro YK. Augmented reality smart glasses: an investigation of technology acceptance drivers. Int J Technol Mark. 2016;11(2):123–48.

    Article  Google Scholar 

  44. Whyte J, Nikolić D. Virtual reality and the built environment [internet]. Virtual reality and the built environment. 2nd ed. Milton Park: Routledge, 2018. https://www.taylorfrancis.com/books/9781317211143.

  45. Dargar S, Kennedy R, Lai W, Arikatla V, De S. Towards immersive virtual reality (iVR): a route to surgical expertise. J Comput Surg. 2015;2.

    Google Scholar 

  46. Slater M, Steed A, McCarthy J, Maringelli F. The influence of body movement on subjective presence in virtual environments. Hum Factors. 1998;40(3):469–77.

    Article  CAS  PubMed  Google Scholar 

  47. Lee KM. Presence, explicated. Commun Theory. 2004;14(1):27–50.

    Article  Google Scholar 

  48. Loomis JM. Presence in virtual reality and everyday life: immersion within a world of representation. Presence Teleoperators Virtual Environ. 2016;25(2):169–74.

    Article  Google Scholar 

  49. Poston T, Serra L. Dextrous virtual work. Commun ACM. 1996;39:37–45.

    Article  Google Scholar 

  50. Stadie AT, Kockro RA, Reisch R, Tropine A, Boor S, Stoeter P, et al. Virtual reality system for planning minimally invasive neurosurgery: technical note. J Neurosurg. 2008;108(2):382–94.

    Article  PubMed  Google Scholar 

  51. Kress B, Starner T. A review of head-mounted displays (HMD) technologies and applications for consumer electronics. In: Kazemi AA, Kress BC, Thibault S, editors. Photonic applications for aerospace, commercial, and harsh environments IV [Internet]. 2013. p. 87200A. http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.2015654.

  52. Biocca F, Delaney B. Immersive virtual reality technology. In: Communication in the age of virtual reality. 1995.

    Google Scholar 

  53. Hillmann C, Hillmann C. Comparing the Gear VR, Oculus Go, and Oculus Quest. In: Unreal for mobile and standalone VR. 2019.

    Google Scholar 

  54. Oculus. Oculus Quest [Internet]. [cited 2020 Feb 1]. https://www.oculus.com/quest/.

  55. Samsung. Samsung Gear VR with controller [Internet]. Samsung. [cited 2020 Feb 1]. https://www.samsung.com/global/galaxy/gear-vr/.

  56. Google. Google Cardboard—Google VR [Internet]. Google. [cited 2020 Feb 1]. https://arvr.google.com/cardboard/.

  57. Amer A, Peralez P. Affordable altered perspectives: making augmented and virtual reality technology accessible. In: Proceedings of the 4th IEEE global humanitarian technology conference, GHTC 2014 [Internet]. IEEE; 2014. p. 603–608. http://ieeexplore.ieee.org/document/6970345/.

  58. Stone RJ. Haptic feedback: a brief history from telepresence to virtual reality. In: Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics). 2001.

    Google Scholar 

  59. 3D Systems. Haptic devices [Internet]. 2018 [cited 2020 Feb 1]. https://www.3dsystems.com/sites/default/files/2019-04/3d-systems-haptic-device-en-letter-web-2018-08-06.pdf.

  60. Jiang Y, Yang C, Wang X, Su CY. Kinematics modeling of Geomagic Touch X haptic device based on adaptive parameter identification. 2016 IEEE Int Conf Real-Time Comput Robot RCAR 2016. 2016. pp. 295–300.

    Google Scholar 

  61. Escobar-Castillejos D, Noguez J, Neri L, Magana A, Benes B. A review of simulators with haptic devices for medical training. J Med Syst [Internet]. 2016 [cited 2021 Jul 6];40(4):104. https://pubmed.ncbi.nlm.nih.gov/26888655/.

  62. Shull PB, Damian DD. Haptic wearables as sensory replacement, sensory augmentation and trainer—a review. J Neuroeng Rehabil. 2015;12:59.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Uppot RN, Laguna B, McCarthy CJ, De Novi G, Phelps A, Siegel E, et al. Implementing virtual and augmented reality tools for radiology education and training, communication, and clinical care. Radiology [Internet]. 2019:182210. http://pubs.rsna.org/doi/10.1148/radiol.2019182210.

  64. Rizzetto F, Bernareggi A, Rantas S, Vanzulli A, Vertemati M. Immersive virtual reality in surgery and medical education: diving into the future. Am J Surg [Internet]. 2020;220(4):856–7. https://linkinghub.elsevier.com/retrieve/pii/S0002961020302373.

  65. Silverstein JC, Dech F, Edison M, Jurek P, Helton WS, Espat NJ. Virtual reality: immersive hepatic surgery educational environment. Surgery. 2002;132(2):274–7.

    Article  PubMed  Google Scholar 

  66. Mastrangelo MJ, Adrales G, McKinlay R, George I, Witzke W, Plymale M, et al. Inclusion of 3-D computed tomography rendering and immersive VR in a third year medical student surgery curriculum. In: Studies in health technology and informatics [Internet]. 2003. p. 199–203. http://www.ncbi.nlm.nih.gov/pubmed/15455893.

  67. Zackoff MW, Real FJ, Cruse B, Davis D, Klein M. Medical student perspectives on the use of immersive virtual reality for clinical assessment training. Acad Pediatr [Internet]. 2019;19(7):849–51. https://doi.org/10.1016/j.acap.2019.06.008.

  68. Stepan K, Zeiger J, Hanchuk S, Del Signore A, Shrivastava R, Govindaraj S, et al. Immersive virtual reality as a teaching tool for neuroanatomy. Int Forum Allergy Rhinol [Internet]. 2017;7(10):1006–13. http://doi.wiley.com/10.1002/alr.21986

    Article  PubMed  Google Scholar 

  69. Ekstrand C, Jamal A, Nguyen R, Kudryk A, Mann J, Mendez I. Immersive and interactive virtual reality to improve learning and retention of neuroanatomy in medical students: a randomized controlled study. C Open. 2018;6(1):E103–9.

    Article  Google Scholar 

  70. Pulijala Y, Ma M, Pears M, Peebles D, Ayoub A. Effectiveness of immersive virtual reality in surgical training—a randomized control trial. J Oral Maxillofac Surg [Internet]. 2018;76(5):1065–1072. https://doi.org/10.1016/j.joms.2017.10.002.

  71. Sankaranarayanan G, Li B, Manser K, Jones SB, Jones DB, Schwaitzberg S, et al. Face and construct validation of a next generation virtual reality (Gen2-VR©) surgical simulator. Surg Endosc [Internet]. 2016;30(3):979–985. http://link.springer.com/10.1007/s00464-015-4278-7.

  72. Huber T, Paschold M, Hansen C, Wunderling T, Lang H, Kneist W. New dimensions in surgical training: immersive virtual reality laparoscopic simulation exhilarates surgical staff. Surg Endosc. 2017;31(11):4472–7.

    Article  PubMed  Google Scholar 

  73. Huber T, Wunderling T, Paschold M, Lang H, Kneist W, Hansen C. Highly immersive virtual reality laparoscopy simulation: development and future aspects. Int J Comput Assist Radiol Surg. 2018;13(2):281–90.

    Article  PubMed  Google Scholar 

  74. Barré J, Michelet D, Truchot J, Jolivet E, Recanzone T, Stiti S, et al. Virtual reality single-port sleeve gastrectomy training decreases physical and mental workload in novice surgeons: an exploratory study. Obes Surg [Internet]. 2019;29(4):1309–1316. http://link.springer.com/10.1007/s11695-018-03680-9.

  75. Frederiksen JG, Sørensen SMD, Konge L, Svendsen MBS, Nobel-Jørgensen M, Bjerrum F, et al. Cognitive load and performance in immersive virtual reality versus conventional virtual reality simulation training of laparoscopic surgery: a randomized trial. Surg Endosc [Internet]. 2019. https://doi.org/10.1007/s00464-019-06887-8.

  76. Moro C, Štromberga Z, Raikos A, Stirling A. The effectiveness of virtual and augmented reality in health sciences and medical anatomy. Anat Sci Educ. 2017;10(6):549–59.

    Article  PubMed  Google Scholar 

  77. Martens MAG, Antley A, Freeman D, Slater M, Harrison PJ, Tunbridge EM. It feels real: physiological responses to a stressful virtual reality environment and its impact on working memory. J Psychopharmacol. 2019;33(10):1264–73.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Ontrup G, Vogel M, Wolf OT, Zahn PK, Kluge A, Hagemann V. Does simulation-based training in medical education need additional stressors? An experimental study. Ergonomics [Internet]. 2020;63(1):80–90. https://www.tandfonline.com/doi/full/10.1080/00140139.2019.1677948.

  79. Rieger M, Gabl M, Gruber H, Jaschke WR, Mallouhi A. CT virtual reality in the preoperative workup of malunited distal radius fractures: preliminary results. Eur Radiol. 2005;15(4):792–7.

    Article  PubMed  Google Scholar 

  80. Du ZY, Gao X, Zhang XL, Wang ZQ, Tang WJ. Preoperative evaluation of neurovascular relationships for microvascular decompression in the cerebellopontine angle in a virtual reality environment: technical note. J Neurosurg. 2010;113(3):479–85.

    Article  PubMed  Google Scholar 

  81. Kockro RA, Killeen T, Ayyad A, Glaser M, Stadie A, Reisch R, et al. Aneurysm surgery with preoperative three-dimensional planning in a virtual reality environment: technique and outcome analysis. World Neurosurg. 2016;96:489–99.

    Article  PubMed  Google Scholar 

  82. Parkhomenko E, O’Leary M, Safiullah S, Walia S, Owyong M, Lin C, et al. Pilot assessment of immersive virtual reality renal models as an educational and preoperative planning tool for percutaneous nephrolithotomy. J Endourol. 2019;33(4):283–8.

    Article  PubMed  Google Scholar 

  83. Calatayud D, Arora S, Aggarwal R, Kruglikova I, Schulze S, Funch-Jensen P, et al. Warm-up in a virtual reality environment improves performance in the operating room. Ann Surg. 2010;251(6):1181–5.

    Article  PubMed  Google Scholar 

  84. Niitsu H, Hirabayashi N, Yoshimitsu M, Mimura T, Taomoto J, Sugiyama Y, et al. Using the objective structured assessment of technical skills (OSATS) global rating scale to evaluate the skills of surgical trainees in the operating room. Surg Today. 2013;43(3):271–5.

    Article  PubMed  Google Scholar 

  85. Moldovanu R, Târcoveanu E, Dimofte G, Lupaşcu C, Bradea C. Preoperative warm-up using a virtual reality simulator. J Soc Laparoendosc Surg. 2011;15(4):533–8.

    Article  Google Scholar 

  86. Geoffrion R, Lee T, Singer J. Validating a self-confidence scale for surgical trainees. J Obstet Gynaecol Canada [Internet]. 2013;35(4):355–61. https://linkinghub.elsevier.com/retrieve/pii/S1701216315309646.

  87. Bal BS, Choma TJ. What to disclose? Revisiting informed consent. Clin Orthop Relat Res. 2012;470(5):1346–56.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Tang R, Ma LF, Rong ZX, Li MD, Zeng JP, Wang XD, et al. Augmented reality technology for preoperative planning and intraoperative navigation during hepatobiliary surgery: a review of current methods. Hepatobiliary Pancreat Dis Int. 2018;17(2):101–12.

    Article  PubMed  Google Scholar 

  89. Sampogna G, Pugliese R, Elli M, Vanzulli A, Forgione A. Routine clinical application of virtual reality in abdominal surgery. Minim Invasive Ther Allied Technol [Internet]. 2017;26(3):135–43. https://www.tandfonline.com/doi/full/10.1080/13645706.2016.1275016.

  90. Alaraj A, Luciano CJ, Bailey DP, Elsenousi A, Roitberg BZ, Bernardo A, et al. Virtual reality cerebral aneurysm clipping simulation with real-time haptic feedback. Oper Neurosurg. 2015;11(1):52–8.

    Article  Google Scholar 

  91. Robison RA, Liu CY, Apuzzo MLJ. Man, mind, and machine: the past and future of virtual reality simulation in neurologic surgery. World Neurosurg. 2011;76(5):419–30.

    Article  PubMed  Google Scholar 

  92. Vertemati M, Cassin S, Rizzetto F, Vanzulli A, Elli M, Sampogna G, et al. A virtual reality environment to visualize three-dimensional patient-specific models by a mobile head-mounted display. Surg Innov [Internet]. 2019;26(3):359–370. http://journals.sagepub.com/doi/10.1177/1553350618822860.

  93. Galati R, Simone M, Barile G, De Luca R, Cartanese C, Grassi G. Experimental setup employed in the operating room based on virtual and mixed reality: analysis of pros and cons in open abdomen surgery. J Healthc Eng [Internet]. 2020 [cited 2021 Jul 13];2020:1–11. https://pubmed.ncbi.nlm.nih.gov/32832048/.

  94. Faure F, Duriez C, Delingette H, Allard J, Gilles B, Marchesseau S, et al. SOFA: a multi-model framework for interactive physical simulation. In: Studies in mechanobiology, tissue engineering and biomaterials [internet]. 2012. p. 283–321. http://link.springer.com/10.1007/8415_2012_125.

  95. Simulation Open Framework Architecture. Story of SOFA. [Internet]. The SOFA Community. 2015 [cited 2021 Aug 22]. https://www.sofa-framework.org/about/story/.

  96. Regan C. An investigation into nausea and other side-effects of head-coupled immersive virtual reality. Virtual Real [Internet]. 1995;1(1):17–31. http://link.springer.com/10.1007/BF02009710.

  97. Rosa PJ, Morais D, Gamito P, Oliveira J, Saraiva T. The immersive virtual reality experience: a typology of users revealed through multiple correspondence analysis combined with cluster analysis technique. Cyberpsychology, Behav Soc Netw [Internet]. 2016;19(3):209–16. http://www.liebertpub.com/doi/10.1089/cyber.2015.0130.

  98. Oculus. Oculus rift and touch health and safety warnings [internet]. 2018. https://www.oculus.com/legal/health-and-safety-warnings/.

  99. Aseni P, Vezzulli F, Rizzetto F, Cassin S, Rantas S, Cereda A, et al. Grade IV liver injury following mechanical cardiopulmonary resuscitation with postoperative three-dimensional evaluation. J Emerg Trauma Shock [Internet]. 2020;13(4):306–8. http://www.ncbi.nlm.nih.gov/pubmed/33897149.

  100. Aseni P, Santaniello T, Rizzetto F, Gentili L, Pezzotta F, Cavaliere F, et al. Hybrid additive fabrication of a transparent liver with biosimilar haptic response for preoperative planning. Diagnostics [Internet]. 2021;11(9):1734. https://www.mdpi.com/2075-4418/11/9/1734.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Rizzetto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rizzetto, F., Rantas, S., Vezzulli, F., Cassin, S., Aseni, P., Vertemati, M. (2023). New Trends in Surgical Education and Mentoring by Immersive Virtual Reality: An Innovative Tool for Patient’s Safety. In: Aseni, P., Grande, A.M., Leppäniemi, A., Chiara, O. (eds) The High-risk Surgical Patient. Springer, Cham. https://doi.org/10.1007/978-3-031-17273-1_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-17273-1_58

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-17272-4

  • Online ISBN: 978-3-031-17273-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics