Skip to main content

Into the Intimacy of Corals, Builders of the Sea

  • Chapter
  • First Online:
Corals and Reefs

Abstract

Belonging to the very diverse cnidarian phylum, reef-building and non-reef-building scleractinian corals have an astonishing biology to respond to the physico-chemical constraints of marine coastal life. First are presented the relationship within the cnidarian and within the scleractinians. The world-wide distribution of reef-building scleractinian is also discussed. Second, the scleractinian morphology and anatomy are presented through the sexual and asexual reproductions, and the skeleton attributes of individuals. Coral colonies are also evoked through their morphology, the arrangement of their corallites and their phenotypic plasticity. Third, the symbiotic association between scleractinarians and photosynthetic algae (zooxanthellae) is deemed. Fourth, the major role plays by the scleractinians to global carbonate production and the reef building is presented through a brief description of the principles of biomineralisation. The chapter ends with a brief description of the two major modes of nutrition used by scleractinians, including autotrophy via symbiosis and heterotrophy with prey capture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adkins JF, Boyle EA, Curry WB, Lutringer A (2003) Stable isotopes in deep-sea corals and a new mechanism for ‘vital effects’. Geochim Cosmochim Acta 67:1129–1143

    CAS  Google Scholar 

  • Al-Horani FA, Al-Moghrabi SM, de Beer D (2003) The mechanism of calcification and its relation to photosynthesis and respiration in the scleractinian coral Galaxea fascicularis. Mar Biol 142:419–426

    CAS  Google Scholar 

  • Allemand D, Tambutté É, Zoccola D, Tambutté S (2011) Coral calcification, cells to reefs. In: Dubinsky Z, Stambler N (eds) Coral reefs: an ecosystem in transition. Springer, pp 119–150

    Google Scholar 

  • Alloiteau J (1952) Embranchement des coelentérés. In: Piveteau J (ed) Traité de Paléontologie. Masson, Paris, France, pp 376–684

    Google Scholar 

  • Alloiteau J (1957) Contribution à la systématique des madréporaires fossiles. C.N.R.S. éditions, Paris, France, p 462

    Google Scholar 

  • Alloiteau J (1959) Recherches sur le développement du squelette chez les madréporaires. Bulletin de la Société Géologique de France 7:678–686

    Google Scholar 

  • Baker AC (2003) Flexibility and specificity in coral-algal symbiosis: diversity, ecology, and biogeography of. Annu Rev Ecol Evol Syst 34:661–689

    Google Scholar 

  • Ball EE, Hayward DC, Reece-Hoyes JS, Hislop NR, Samuel G, Saint R, Harrison PL, Miller DJ (2002) Coral development: from classical embryology to molecular control. Int J Dev Biol 46:671–678

    CAS  PubMed  Google Scholar 

  • Barnes RSK, Hughes RN (1999) An introduction to marine ecology, 3rd edn. Blackwell Science, 286 pp

    Google Scholar 

  • Berntson EA, France SC, Mullineaux LS (1999) Phylogenetic relationships within the class Anthozoa (phylum Cnidaria) based on nuclear 18S rDNA sequences. Mol Phylogenet Evol 13:417–433

    CAS  PubMed  Google Scholar 

  • Bourne GC (1887) On the anatomy of Mussa and Euphyllia and the morphology of the Madreporian skeleton. Q J Microsc Sci xxviii:21–51

    Google Scholar 

  • Bridge D, Cunningham CW, Schierwater B, DeSalle R, Buss LW (1992) Class-level relationships in the phylum Cnidaria: evidence from mitochondrial genome structure. Proc Natl Acad Sci U S A 89:8750–8753

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bridge D, Cunningham CW, DeSalle R, Buss LW (1995) Class-level relationships in the phylum Cnidaria: molecular and morphological evidence. Mol Syst Biol 12:679–689

    CAS  Google Scholar 

  • Brusca RC, Brusca GJ (2003) Invertebrates, 2nd edn. Sinauer Associates, Incorporation Publishers, Sunderland, 936 pp

    Google Scholar 

  • Budd AF, Romano SL, Smith ND, Barbeitos MS (2010) Rethinking the phylogeny of scleractinian corals: a review of morphological and molecular data. Integr Comp Biol 50:411–427

    PubMed  Google Scholar 

  • Cai W-J, Ma Y, Hopkinson BM, Grottoli AG, Warner ME, Ding Q, Hu X, Yuan X, Schoepf V, Xu H, Han C, Melman TF, Hoadley KD, Pettay DT, Matsui Y, Baumann JH, Levas S, Ying Y, Wang Y (2016) Microelectrode characterization of coral daytime interior pH and carbonate chemistry. Nat Commun 7:11144

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cairns SD (1999) Species richness of recent Scleractinia. Atoll Res Bull 459:1–46

    Google Scholar 

  • Cartwright P, Collins A (2007) Fossils and phylogenies: integrating multiple lines of evidence to investigate the origin of early major metazoan lineages. Integr Comp Biol 47:744–751

    PubMed  Google Scholar 

  • Chappell J (1980) Coral morphology, diversity and reef growth. Nature 286:249–252

    Google Scholar 

  • Chevalier J-P, Beauvais L (1987) Ordre de Scléractiniaires. In: Grassé PP (ed) Traité de Zoologie, Cnidaires, Anthozoaires. Masson, Paris, France, pp 403–764

    Google Scholar 

  • Chevalier J-P, Tiffon Y (1987) Ordre de Scléractiniaires. In: Grassé PP (ed) Traité de Zoologie, Cnidaires, Anthozoaires. Masson, Paris, France, pp 403–764

    Google Scholar 

  • Collins AG, Schuchert P, Marques AC, Jankowski T, Medina M, Schierwater B (2006) Medusozoan phylogeny and character evolution clarified by new large and small subunit rDNA data and an assessment of the utility of phylogenetic mixture models. Mol Syst Biol 55:97–115

    Google Scholar 

  • Cuif J-P, Dauphin Y (2005) The environment recording unit in corals skeletons – a synthesis of structural and chemical evidences for a biochemically driven, stepping-growth process in fibres. Biogeosciences 2:61–73

    CAS  Google Scholar 

  • Daly M, Brugler MR, Cartwright P, Collins AG, Dawson MN, Fautin DG et al (2007) The phylum Cnidaria: a review of phylogenetic patterns and diversity 300 years after Linnaeus. Zootaxa 1668:127–182

    Google Scholar 

  • Decarlo TM, Gaetani GA, Holcomb M, Cohen AL (2015) Experimental determination of factors controlling U/Ca of aragonite precipitated from seawater: implications for interpreting coral skeleton. Geochim Cosmochim Acta 162:151–165

    CAS  Google Scholar 

  • Djogic R, Sipos L, Branica M (1986) Characterization of uranium (VI) in seawater. Limnol Oceanogr 31:1122–1131

    CAS  Google Scholar 

  • Enriquez S, Mendez ER, Iglesias-Prieto R (2005) Multiple scattering on coral skeletons enhances light absorption by symbiotic algae. Limnol Oceanogr 50:1025–1032

    Google Scholar 

  • Fautin DG, Mariscal RN (1991) Cnidaria: Anthozoa. In: Harrison FW, Westfall JA (eds) Placozoa, Porifera, Cnidaria, and Ctenophora. Wiley-Liss, New York, pp 267–358

    Google Scholar 

  • Fournier A (2013) The story of symbiosis with zooxanthellae, or how they enable their host to thrive in a nutrient poor environment. Master thesis, École normale supérieure, université de Lyon, Lyon, France, 8 pp

    Google Scholar 

  • Fox R, Barnes RD, Ruppert EE (2003) Invertebrate zoology, 7th edn. Brooks/Cole Publishing, Pacific Grove, 1008 pp

    Google Scholar 

  • France SC, Rosel PE, Agenbroad JE, Mullineaux LS, Kocher TD (1996) DNA sequence variation of mitochondrial large-subunit rRNA provides support for a two-subclass organization of the Anthozoa (Cnidaria). Mol Mar Biol Biotechnol 5:15–28

    CAS  PubMed  Google Scholar 

  • Fukami H, Chen CA, Budd AF, Collins A, Wallace C, Chuang YY, Chen C, Dai CF, Iwao K, Sheppard C, Knowlton N (2008) Mitochondrial and nuclear genes suggest that stony corals are monophyletic but most families of stony corals are not (Order Scleractinia, Class Anthozoa, Phylum Cnidaria). PLoS One 3:e3222

    PubMed  PubMed Central  Google Scholar 

  • Galloway SB, Work TM, Bochsler VS, Harley RA, Kramarsky-Winters E, Mc Laughlin SM, Meteyer CU, Morado JF, Nicholson JH, Parnell PG, Peters EC, Reynolds TL, Rotstein DS, Sileo L, Woodley CM (2006) A report of the CDHC coral histopathology workshop II. National Oceanic and Atmospheric Administration, Silver Spring, 88 pp

    Google Scholar 

  • Garland TJ, Kely SA (2006) Phenotypic plasticity and experimental evolution. J Exp Biol 209:2344–2361

    PubMed  Google Scholar 

  • Goreau TF (1959) The physiology of skeleton formation in corals. I. A method for measuring the rate of calcium deposition by corals under different conditions. Biol Bull 116:59–75

    CAS  Google Scholar 

  • Goreau TF, Goreau NI (1959a) The physiology of skeleton formation in corals. II. Calcium deposition by hermatypic corals under different conditions. Biol Bull 117:239–250

    CAS  Google Scholar 

  • Goreau TF, Goreau NI (1959b) The physiology of skeleton formation in corals. III. Calcium rate as a function of colony weight and total nitrogen in the reef coral Manicina areolota (Lin.). Biol Bull 118:419–429

    Google Scholar 

  • Goreau TF, Goreau NI, Yonge CM (1971) Reef corals: autotrophs or heterotrophs? Biol Bull 141:247–260

    Google Scholar 

  • Hayashibara T, Ohike S, Kakinuma Y (1997) Embryonic and larval development and planula metamorphosis of four gamete-spawning Acropora (Anthozoa, Scleractinia). In: Proceedings of the 8th international coral reef symposium, vol 2, Balboa, Panama, pp 1231–1236

    Google Scholar 

  • Hirose M, Kinzie RA III, Hidaka M (2001) Timing and process of entry of zooxanthellae into oocytes of hermatypic corals. Coral Reefs 20:273–280

    Google Scholar 

  • Houlbrèque F, Ferrier-Pagès C (2009) Heterotrophy in tropical scleractinian corals. Biol Rev 84:1–17

    PubMed  Google Scholar 

  • Huang Y, Chen Z-Q, Zhao L, Stanley GD Jr, Yan J, Pei Y, Yang W, Huang J (2019) Restoration of reef ecosystems following the Guadalupian–Lopingian boundary mass extinction: evidence from the Laibin area, South China. Palaeogeogr Palaeoclimatol Palaeoecol 519:8–22

    Google Scholar 

  • Ichikawa K (2007) Buffering dissociation/formation reaction of biogenic calcium carbonate. Chem 13:10176–10181

    CAS  Google Scholar 

  • Johnston IS (1980) The ultrastructure of skeletogenesis in zooxanthellate corals. Int Rev Cytol 67:171–214

    CAS  Google Scholar 

  • Jones OA, Endean R (1973) Biology and geology of coral reefs, vol 2: biology 1. Academic Press, New York, 435 pp

    Google Scholar 

  • Jones R, Ricardo GF, Negri AP (2015) Effects of sediments on the reproductive cycle of corals. Mar Pollut Bull 100:13–33

    CAS  PubMed  Google Scholar 

  • Kerr AM (2005) Molecular and morphological supertree of stony corals (Anthozoa: Scleractinia) using matrix representation parsimony. Biol Rev Camb Philos Soc 80:543–558

    PubMed  Google Scholar 

  • Kitahara MV (2011) Morphological and molecular systematics of scleractinian corals (Cnidaria, Anthozoa), with emphasis on deep-water species. PhD thesis, James Cook University, Townsville, Australia, 334 pp

    Google Scholar 

  • Kitahara MV, Cairns SD, Stolarski J, Blair D, Miller DJ (2010) A comprehensive phylogenetic analysis of the Scleractinia (Cnidaria, Anthozoa) based on mitochondrial CO1 sequence data. PLoS One 5:e11490

    PubMed  PubMed Central  Google Scholar 

  • LaJeunesse TC (2004) Species radiations of symbiotic dinoglagellates in the Atlantic and Indo-Pacific since the Miocene–Pliocene transition. Mol Biol Evol 22:570–581

    PubMed  Google Scholar 

  • Lalli CM, Parsons TR (1995) Biological oceanography: an introduction. UK Butterworth-Heinemann, Oxford, UK, pp 220–233

    Google Scholar 

  • Levinton JS (1995) Marine biology: function, biodiversity, ecology. Oxford University Press, New York, pp 306–319

    Google Scholar 

  • Lin MF, Chou WH, Kitahara MV, Chen CL, Miller DJ, Forêt S (2016) Corallimorpharians are not ‘naked corals’: insights into relationships between Scleractinia and Corallimorpharia from phylogenomic analyses. PeerJ 4:e2463

    PubMed  PubMed Central  Google Scholar 

  • Marques AC, Collins AG (2004) Cladistic analysis of Medusozoa and cnidarian evolution. Invertebr Biol 123:23–42

    Google Scholar 

  • Martin-Garin B, Viseur S, Pero J-P, Ribaud-Laurenti A, Conesa G, Edinger E (2012) Georeferencing and geostatistics for coral reef modeling. In: Proceedings of the 12th international coral reef symposium, Cairns, Australia

    Google Scholar 

  • Matthaï G (1926) VIII. Colony-formation in Astraeid corals. Philos Trans R Soc Lond 214B:313–367

    Google Scholar 

  • McFadden CS, France SC, Sánchez JA, Alderslade PA (2006) A molecular phylogenetic analysis of the Octocorallia (Cnidaria: Anthozoa) based on mitochondrial protein-coding sequences. Mol Phylogenet Evol 41:513–527

    CAS  PubMed  Google Scholar 

  • Muller-Parker G, D’elia CF, Cook CB (2015) Interactions between corals and their symbiotic algae. In: Birkeland C (ed) Coral reefs in the Anthropocene. Springer, Dordrecht, pp 99–116

    Google Scholar 

  • Naumann MS, Orejas C, Ferrier-Pagès C (2014) Species-specific physiological response by the cold-water corals Lophelia pertusa and Madrepora oculata to variations within their natural temperature range. Deep-Sea Res II Top Stud Oceanogr 99:36–41

    CAS  Google Scholar 

  • Nüchter T, Benoit M, Engel U, Özbek S, Holstein TW (2006) Nanosecond-scale kinetics of nematocyst discharge. Curr Biol 16:R316–R318

    PubMed  Google Scholar 

  • Odorico DM, Miller DJ (1997) Internal and external relationships of the Cnidaria: implications of primary and predicted secondary structure of the 5′-end of the 23S-like rDNA. Proc R Soc B Biol Sci 264:77–82

    CAS  Google Scholar 

  • Ogilvie MM (1895) Microscopic and systematic study of madreporarian types of corals. Proc R Soc Lond A 59:9–18

    Google Scholar 

  • Ogilvie MM (1896) Microscopic and systematic study of madreporarian types of corals. Proc R Soc Lond B 187:83–345

    Google Scholar 

  • Okubo N (2016) Restructuring the traditional suborders in the order Scleractinia based on embryogenetic morphological characteristics. Zool Sci 33:116–123

    Google Scholar 

  • Okubo N, Motokawa T (2007) Embryogenesis in the reef-building coral Acropora spp. Zool Sci 24:1169–1177

    Google Scholar 

  • Ries JB (2011) A physicochemical framework for interpreting the biological calcification response to CO2-induced ocean acidification. Geochim Cosmochim Acta 75:4053–4064

    CAS  Google Scholar 

  • Risk MJ, Pearce TH (1992) Interference imaging of daily growth bands in massive corals. Nature 358:572

    Google Scholar 

  • Rodríguez E, Barbeitos MS, Brugler MR, Crowley LM, Grajales A, Gusmão L et al (2014) Hidden among sea anemones: the first comprehensive phylogenetic reconstruction of the order Actiniaria (Cnidaria, Anthozoa, Hexacorallia) reveals a novel group of hexacorals. PLoS One 9:e96998

    PubMed  PubMed Central  Google Scholar 

  • Romano SL, Cairns SD (2000) Molecular phylogenetic hypotheses for the evolution of scleractinian corals. Bull Mar Sci 67:1043–1068

    Google Scholar 

  • Roos PJ (1967) Growth and occurrence of the reef coral Porites asteroides Lamarck in relation to submarine radiance distribution. Academisch Proefschritt, Universiteit van Amsterdam, p 72

    Google Scholar 

  • Rowan R (2004) Thermal adaptation in reef coral symbionts. Nature 430:742–742

    CAS  PubMed  Google Scholar 

  • Schlichter D, Liebezeit G (1991) The natural release of amino acids from the symbiotic coral Heteroxenia fuscescens (Ehrb) as a function of photosynthesis. J Exp Mar Biol Ecol 150:83–90

    CAS  Google Scholar 

  • Schuhmacher H (1988) Development of coral communities on artificial reef types over 20 years (Eilat, Red Sea). In: Proceedings of the 6th international coral reef symposium, vol 3, Townsville, Australie, pp 379–384

    Google Scholar 

  • Sevilgen DS, Venn AA, Hu MY, Tambutté É, de Beer D, Planas-Bielsa V, Tambutté S (2019) Full in vivo characterization of carbonate chemistry at the site of calcification in corals. Sci Adv 5:eaau7447

    PubMed  PubMed Central  Google Scholar 

  • Song J, Won JH (1997) Systematic relationship of the anthozoan orders based on the partial nuclear 18S rDNA sequences. Korean J Biol Sci 1:43–52

    CAS  Google Scholar 

  • Sorokin YI (1973) On the feeding of some scleractinian corals with bacteria and dissolved organic matter. Limnol Oceanogr 18:380–386

    CAS  Google Scholar 

  • Spalding MD, Ravilious C, Green EP (2001) World atlas of coral reefs. University of California Press, Berkeley, 424 pp

    Google Scholar 

  • Stanley GD Jr, Swart PK (1995) Evolution of the coral-zooxanthellate symbiosis during the Triassic: a geochemical approach. Paleobiology 21:179–199

    Google Scholar 

  • Stolarski J (2003) Three-dimensional micro- and nanostructural characteristics of the scleractinian coral skeleton: a biocalcification proxy. Acta Palaeontol Pol 4:497–530

    Google Scholar 

  • Stolarski J, Roniewicz E (2001) Towards a new synthesis of evolutionary relationships and classification of Scleractinia. J Paleontol 75:1090–1108

    Google Scholar 

  • Sumich JL (1996) An introduction to the biology of marine life, 6th edn. Wm. C. Brown Company Publishers, Dubuque, pp 255–269

    Google Scholar 

  • Sun C-Y, Stifler Cayla A, Chopdekar Rajesh V, Schmidt Connor A, Parida G, Schoeppler V, Fordyce Benjamin I, Brau Jack H, Mass T, Tambutté S, Gilbert Pupa UPA (2020) From particle attachment to space-filling coral skeletons. Proc Natl Acad Sci 117:30159–30170

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takabayashi M, Adams LM, Pochon X, Gates RD (2012) Genetic diversity of free-living Symbiodinium in surface water and sediment of Hawai'i and Florida. Coral Reefs 31:157–167

    Google Scholar 

  • Tambutté É, Allemand D, Zoccola D, Meibom A, Lotto S, Caminiti N, Tambutté S (2007) Observations of the tissue-skeleton interface in the scleractinian coral Stylophora pistillata. Coral Reefs 26:517–529

    Google Scholar 

  • Tambutté S, Holcomb M, Ferrier-Pagès C, Reynaud S, Tambutté É, Zoccola D, Allemand D (2011) Coral biomineralization: from the gene to the environment. J Exp Mar Biol Ecol 408:58–78

    Google Scholar 

  • Todd PA (2008) Morphological plasticity in scleractinian corals. Biol Rev 83:315–337

    PubMed  Google Scholar 

  • Tremblay P, Gori A, Maguer JF, Hoogenboom M, Ferrier-Pagès C (2016) Heterotrophy promotes the re-establishment of photosynthate translocation in a symbiotic coral after heat stress. Sci Rep 6:38112

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vandermeulen JH (1974) Studies on reef corals. II. Fine structure of planktonic planula larvae of Pocillopora damicornis, with emphasis on the aboral epidermis. Mar Biol 27:239–249

    Google Scholar 

  • Vecsei A (2004) A new estimate of global reefal carbonate production including the fore-reefs. Glob Planet Chang 43:1–18

    Google Scholar 

  • Veron JEN (1995) Corals in space and time: the biogeography and evolution of the Scleractinia. University of New South Wales Press, Sydney, p 321

    Google Scholar 

  • Veron JEN (2000) Corals of the world. Australian Institute of Marine Science, Townsville, Australie, 1394 pp

    Google Scholar 

  • Veron JEN (2013) Overview of the taxonomy of zooxanthellate Scleractinia. Zool J Linnean Soc 169:485–508

    Google Scholar 

  • Veron JEN, Stafford-Smith MG, Turak E, DeVantier LM (2016) Corals of the world. Version 0.01 (Beta). http://coralsoftheworld.org/v0.01(Beta)

  • Vidal-Dupiol J, Adjeroud M, Roger E, Foure L, Duval D, Mone Y, Ferrier-Pagès C, Tambutté E, Tambutté S, Zoccola D, Allemand D, Mitta G (2009) Coral bleaching under thermal stress: putative involvement of host/symbiont recognition mechanisms. BMC Physiol 9:14

    PubMed  PubMed Central  Google Scholar 

  • von Euw S, Zhang Q, Manichev V, Murali N, Gross J, Feldman LC et al (2017) Biological control of aragonite formation in stony corals. Science 356:933–938

    Google Scholar 

  • Wells JW (1956) Scleractinia. In: Moore RC (ed) Treatise of invertebrate paleontology. Geological Society of America and University of Kansas, Lawrence, KS, pp F328–F444

    Google Scholar 

  • Zapata F, Goetz FE, Smith SA, Howison M, Siebert S, Church SH, Sanders SM, Ames CL, McFadden CS, France SC, Daly M, Collins AG, Haddock SHD, Dunn CW, Cartwright P (2015) Phylogenomic analyses support traditional relationships within Cnidaria. PLoS One 10:e0139068

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Martin-Garin, B., Montaggioni, L.F. (2023). Into the Intimacy of Corals, Builders of the Sea. In: Corals and Reefs . Coral Reefs of the World, vol 16. Springer, Cham. https://doi.org/10.1007/978-3-031-16887-1_2

Download citation

Publish with us

Policies and ethics