Skip to main content

RadTex: Learning Efficient Radiograph Representations from Text Reports

  • Conference paper
  • First Online:
Resource-Efficient Medical Image Analysis (REMIA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13543))

Included in the following conference series:

Abstract

Automated analysis of chest radiography using deep learning has tremendous potential to enhance the clinical diagnosis of diseases in patients. However, deep learning models typically require large amounts of annotated data to achieve high performance – often an obstacle to medical domain adaptation. In this paper, we build a data-efficient learning framework that utilizes radiology reports to improve medical image classification performance with limited labeled data (fewer than 1000 examples). Specifically, we examine image-captioning pretraining to learn high-quality medical image representations that train on fewer examples. Following joint pretraining of a convolutional encoder and transformer decoder, we transfer the learned encoder to various classification tasks. Averaged over 9 pathologies, we find that our model achieves higher classification performance than ImageNet-supervised and in-domain supervised pretraining when labeled training data is limited.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alfarghaly, O., Khaled, R., Elkorany, A., Helal, M., Fahmy, A.: Automated radiology report generation using conditioned transformers. Inf. Med. Unlocked 24, 100557 (2021)

    Article  Google Scholar 

  2. Angehrn, Z., et al.: Artificial intelligence and machine learning applied at the point of care. Front. Pharmacol. 11, 759 (2020)

    Article  Google Scholar 

  3. Beltagy, I., Lo, K., Cohan, A.: SciBERT: a pretrained language model for scientific text. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP) (2019)

    Google Scholar 

  4. Chauhan, G., et al.: Joint modeling of chest radiographs and radiology reports for pulmonary edema assessment. In: MICCAI (2020)

    Google Scholar 

  5. Chen, X., et al.: Microsoft coco captions: Data collection and evaluation server (2015). arXiv:1048550/ARXIV.1504.00325

  6. Davenport, T., Kalakota, R.: The potential for artificial intelligence in healthcare. Future Healthcare J. 6(2), 94 (2019)

    Article  Google Scholar 

  7. Desai, K., Johnson, J.: VirTex: learning visual representations from textual annotations. In: CVPR (2021)

    Google Scholar 

  8. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. arXiv (2020)

    Google Scholar 

  9. Gasimova, A., Montana, G., Rueckert, D.: Automated knee x-ray report generation. arXiv (2021)

    Google Scholar 

  10. Goyal, P., Mahajan, D., Gupta, A., Misra, I.: Scaling and benchmarking self-supervised visual representation learning. CoRR (2019)

    Google Scholar 

  11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. CoRR arXiv:abs/1512.03385 (2015)

  12. Horng, S., Liao, R., Wang, X., Dalal, S., Golland, P., Berkowitz, S.J.: Deep learning to quantify pulmonary edema in chest radiographs. Radiol. Artif. Intell. 3(2), e190228 (2021)

    Google Scholar 

  13. Hosseinzadeh Taher, M.R., Haghighi, F., Feng, R., Gotway, M.B., Liang, J.: A systematic benchmarking analysis of transfer learning for medical image analysis. In: Albarqouni, S., et al. (eds.) DART/FAIR -2021. LNCS, vol. 12968, pp. 3–13. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87722-4_1

    Chapter  Google Scholar 

  14. Irvin, J., et al.: Chexpert: a large chest radiograph dataset with uncertainty labels and expert comparison. In: Thirty-Third AAAI Conference on Artificial Intelligence (2019)

    Google Scholar 

  15. Johnson, A., et al.: Mimic-cxr, a de-identified publicly available database of chest radiographs with free-text reports. In: Scientific data (2019)

    Google Scholar 

  16. Johnson, A., et al.: MIMIC-CXR-JPG - chest radiographs with structured labels (2019)

    Google Scholar 

  17. Johnson, A., Pollard, T., Mark, R., Berkowitz, S., Horng, S.: MIMIC-CXR database. PhysioNet (2019)

    Google Scholar 

  18. Krishnan, K.S., Krishnan, K.S.: Vision transformer based COVID-19 detection using chest x-rays. In: 2021 6th International Conference on Signal Processing, Computing and Control (ISPCC), IEEE (2021)

    Google Scholar 

  19. Liao, R., Chauhan, G., Golland, P., Berkowitz, S., Horng, S.: Pulmonary edema severity grades based on MIMIC-CXR (version 1.0.1). In: PhysioNet (2021). https://doi.org/10.13026/rz5p-rc64

  20. Liao, R., Chauhan, G., Golland, P., Berkowitz, S., Horng, S.: Pulmonary edema severity grades based on mimic-cxr (version 1.0.1). PhysioNet (2021)

    Google Scholar 

  21. Liao, R., et al.: Multimodal representation learning via maximization of local mutual information. In: MICCAI (2021)

    Google Scholar 

  22. Lin, T.Y., et al.: Microsoft coco: Common objects in context (2014). arxiv:1048550/ARXIV.1405.0312

  23. Miura, Y., Zhang, Y., Tsai, E.B., Langlotz, C.P., Jurafsky, D.: Improving factual completeness and consistency of image-to-text radiology report generation. arXiv (2020)

    Google Scholar 

  24. Raghu, M., Zhang, C., Kleinberg, J., Bengio, S.: Transfusion: Understanding transfer learning for medical imaging. arXiv (2019)

    Google Scholar 

  25. Sutton, R., Pincock, D., Baumgart, D., Sadowski, D., Fedorak, R., Kroeker, K.: An overview of clinical decision support systems: benefits, risks, and strategies for success. NPJ Digital Med. 3(1), 1–10 (2020)

    Article  Google Scholar 

  26. Thian, Y.L., et al.: Deep learning systems for pneumothorax detection on chest radiographs: a multicenter external validation study. Radiol. Artif. Intell. 3(4), e200190 (2021)

    Google Scholar 

  27. Vaswani, A., et al.: Attention is all you need. arXiv (2017)

    Google Scholar 

  28. Wang, X., Peng, Y., Lu, L., Lu, Z., Bagheri, M., Summers, R.M.: Chestx-ray8: Hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. CoRR arXiv:abs/1705.02315 (2017)

  29. Wang, X., Peng, Y., Lu, L., Lu, Z., Summers, R.M.: Tienet: text-image embedding network for common thorax disease classification and reporting in chest x-rays. CoRR arXiv:abs/1801.04334 (2018)

  30. Wen, Y., Chen, L., Deng, Y., Zhou, C.: Rethinking pre-training on medical imaging. J. Vis. Commun. Image Representation 78, 103145 (2021)

    Article  Google Scholar 

  31. Xie, Y., Richmond, D.: Pre-training on grayscale imagenet improves medical image classification. In: Leal-Taixé, L., Roth, S. (eds.) Computer Vision - ECCV 2018 Workshops (2019)

    Google Scholar 

  32. Zhang, Y., Jiang, H., Miura, Y., Manning, C.D., Langlotz, C.P.: Contrastive learning of medical visual representations from paired images and text. arXiv (2020)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by MIT Lincoln Laboratory, US Air Force, NIH NIBIB NAC P41EB015902, Wistron, IBM Watson, MIT Deshpande Center, and MIT J-Clinic.

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. This material is based upon work supported by the Old Program 1 under Air Force Contract No. FA8702-15-D-0001. Any opinions, findings, conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the Old Program 1. ©Massachusetts Institute of Technology. Delivered to the U.S. Government with Unlimited Rights, as defined in DFARS Part 252.227-7013 or 7014 (Feb 2014). Notwithstanding any copyright notice, U.S. Government rights in this work are defined by DFARS 252.227-7013 or DFARS 252.227-7014 as detailed above. Use of this work other than as specifically authorized by the U.S. Government may violate any copyrights that exist in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keegan Quigley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Quigley, K. et al. (2022). RadTex: Learning Efficient Radiograph Representations from Text Reports. In: Xu, X., Li, X., Mahapatra, D., Cheng, L., Petitjean, C., Fu, H. (eds) Resource-Efficient Medical Image Analysis. REMIA 2022. Lecture Notes in Computer Science, vol 13543. Springer, Cham. https://doi.org/10.1007/978-3-031-16876-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16876-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16875-8

  • Online ISBN: 978-3-031-16876-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics