Skip to main content

Multi-task Semi-supervised Learning for Vascular Network Segmentation and Renal Cell Carcinoma Classification

  • Conference paper
  • First Online:
Resource-Efficient Medical Image Analysis (REMIA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13543))

Included in the following conference series:

Abstract

Vascular network analysis is crucial to define the tumoral architecture and then diagnose the cancer subtype. However, automatic vascular network segmentation from Hematoxylin and Eosin (H &E) staining histopathological images is still a challenge due to the background complexity. Moreover, there is a lack of large manually annotated vascular network databases. In this paper, we propose a method that reduces reliance on labeled data through semi-supervised learning (SSL). Additionally, considering the correlation between tumor classification and vascular segmentation, we propose a multi-task learning (MTL) model that can simultaneously segment the vascular network using SSL and predict the tumor class in a supervised context. This multi-task learning procedure offers an end-to-end machine learning solution to joint vascular network segmentation and tumor classification. Experiments were carried out on a database of histopathological images of renal cell carcinoma (RCC) and then tested on both own RCC and open-source TCGA datasets. The results show that the proposed MTL-SSL model outperforms the conventional supervised-learning segmentation approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alom, M.Z., Aspiras, T., Taha, T.M., Bowen, T., Asari, V.K.: Mitosisnet: end-to-end mitotic cell detection by multi-task learning. IEEE Access 8, 68695–68710 (2020)

    Article  Google Scholar 

  2. Asare, S.K., You, F., Nartey, O.T.: A semisupervised learning scheme with self-paced learning for classifying breast cancer histopathological images. Comput. Intell. Neurosci. 2020 (2020)

    Google Scholar 

  3. Bukenya, F., Nerissa, C., Serres, S., Pardon, M.C., Bai, L.: An automated method for segmentation and quantification of blood vessels in histology images. Microvasc. Res. 128, 103928 (2020)

    Google Scholar 

  4. Caruana, R.: Multitask learning. Mach. Learn. 28(1), 41–75 (1997)

    Article  MathSciNet  Google Scholar 

  5. Chamanzar, A., Nie, Y.: Weakly supervised multi-task learning for cell detection and segmentation. In: ISBI, pp. 513–516. IEEE (2020)

    Google Scholar 

  6. Chapelle, O., Scholkopf, B., Zien, A.: Semi-supervised learning. IEEE Trans. Neural Netw. 20(3), 542–542 (2009)

    Article  Google Scholar 

  7. Chen, X., Yuan, Y., Zeng, G., Wang, J.: Semi-supervised semantic segmentation with cross pseudo supervision. In: CVPR, pp. 2613–2622 (2021)

    Google Scholar 

  8. Cheville, J.C., Lohse, C.M., Zincke, H., Weaver, A.L., Blute, M.L.: Comparisons of outcome and prognostic features among histologic subtypes of renal cell carcinoma. Am. J. Surg. Pathol. 27(5), 612–624 (2003)

    Article  Google Scholar 

  9. Das, A., Devarampati, V.K., Nair, M.S.: Nas-sgan: a semi-supervised generative adversarial network model for atypia scoring of breast cancer histopathological images. IEEE J. Biomed. Health Inf. (2021)

    Google Scholar 

  10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)

    Google Scholar 

  11. Hsieh, J.J., et al.: Renal cell carcinoma. Nat. Rev. Dis. Primers 3(1), 1–19 (2017)

    Article  Google Scholar 

  12. Kather, J.N., Marx, A., Reyes-Aldasoro, C.C., Schad, L.R., Zöllner, F.G., Weis, C.A.: Continuous representation of tumor microvessel density and detection of angiogenic hotspots in histological whole-slide images. Oncotarget 6(22), 19163 (2015)

    Article  Google Scholar 

  13. Loukas, C.G., Linney, A.: A survey on histological image analysis-based assessment of three major biological factors influencing radiotherapy: proliferation, hypoxia and vasculature. Comput. Methods Program. Biomed. 74(3), 183–199 (2004)

    Article  Google Scholar 

  14. Luo, X.: SSL4MIS. https://github.com/HiLab-git/SSL4MIS (2020)

  15. Ouali, Y., Hudelot, C., Tami, M.: Semi-supervised semantic segmentation with cross-consistency training. In: CVPR, pp. 12674–12684 (2020)

    Google Scholar 

  16. Qian, P., et al.: Multi-target deep learning for algal detection and classification. In: 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pp. 1954–1957. IEEE (2020)

    Google Scholar 

  17. Qiao, S., Shen, W., Zhang, Z., Wang, B., Yuille, A.: Deep co-training for semi-supervised image recognition. In: ECCV, pp. 135–152 (2018)

    Google Scholar 

  18. Simonyan, K., Zisserman, Andrew: Very deep convolutional networks for large-scale image recognition. arXiv (2014)

    Google Scholar 

  19. Sparks, R., Madabhushi, A.: Out-of-sample extrapolation utilizing semi-supervised manifold learning (OSE-SSL): Content based image retrieval for histopathology images. Sci. Rep. 6(1), 1–15 (2016)

    Article  Google Scholar 

  20. Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR, pp. 5693–5703 (2019)

    Google Scholar 

  21. Szegedy, C., et al.: Going deeper with convolutions. In: CVPR, pp. 1–9 (2015)

    Google Scholar 

  22. Tarvainen, A., Valpola, H.: Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results. arXiv (2017)

    Google Scholar 

  23. Vandenhende, S., Georgoulis, S., Van Gool, L.: MTI-net: multi-scale task interaction networks for multi-task learning. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12349, pp. 527–543. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58548-8_31

    Chapter  Google Scholar 

  24. Vu, T.H., Jain, H., Bucher, M., Cord, M., Pérez, P.: Advent: adversarial entropy minimization for domain adaptation in semantic segmentation. In: CVPR, pp. 2517–2526 (2019)

    Google Scholar 

  25. Xiao, R., Debreuve, E., Ambrosetti, D., Descombes, X.: Renal cell carcinoma classification from vascular morphology. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12906, pp. 611–621. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87231-1_59

    Chapter  Google Scholar 

  26. Zhang, X., Zhou, X., Lin, M., Sun, J.: Shufflenet: an extremely efficient convolutional neural network for mobile devices. In: CVPR, pp. 6848–6856 (2018)

    Google Scholar 

  27. Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 408–416. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_47

    Chapter  Google Scholar 

  28. Zhou, Y., et al.: Multi-task learning for segmentation and classification of tumors in 3d automated breast ultrasound images. Med. Image Anal. 70, 101918 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rudan Xiao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xiao, R., Ambrosetti, D., Descombes, X. (2022). Multi-task Semi-supervised Learning for Vascular Network Segmentation and Renal Cell Carcinoma Classification. In: Xu, X., Li, X., Mahapatra, D., Cheng, L., Petitjean, C., Fu, H. (eds) Resource-Efficient Medical Image Analysis. REMIA 2022. Lecture Notes in Computer Science, vol 13543. Springer, Cham. https://doi.org/10.1007/978-3-031-16876-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16876-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16875-8

  • Online ISBN: 978-3-031-16876-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics