Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1070))

  • 384 Accesses

Abstract

Although CNN-GA [1] is totally automated, the generated architectures have a restricted connectional structure since it employs an encoding strategy that encodes the building blocks into a linked list that can be extended to any depth during the process of evolution. Each linked list encoding building block is a “skip layer” or a pooling layer, where the skip layer containing a skip connection and two convolutional layers [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sun, Y., Xue, B., Zhang, M., Yen, G. G., & Lv, J. (2020b). Automatically designing cnn architectures using the genetic algorithm for image classification. IEEE Transactions on Cybernetics, 50(9), 3840–3854.

    Google Scholar 

  2. He, K., Zhang, X., Ren, S., & Sun, J. (2016a). Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 770–778).

    Google Scholar 

  3. Zhong, Z., Yan, J., & Liu, C.-L. (2018). Practical network blocks design with q-learning. In Proceedings of the 2018 AAAI Conference on Artificial Intelligence.

    Google Scholar 

  4. Huang, G., Liu, Z., Weinberger, K. Q., & van der Maaten, L. (2017). Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 4700–4708).

    Google Scholar 

  5. Glorot, X., Bordes, A., & Bengio, Y. (2011). Deep sparse rectifier neural networks. In Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics (pp. 315–323).

    Google Scholar 

  6. Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings of the 32nd International Conference on Machine Learning, Volume 37 of Proceedings of Machine Learning Research (pp. 448–456). PMLR.

    Google Scholar 

  7. Suganuma, M., Shirakawa, S., & Nagao, T. (2018). A genetic programming approach to designing convolutional neural network architectures. In Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI-18 (pp. 5369–5373). https://doi.org/10.24963/ijcai.2018/755.

  8. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z. (2016). Rethinking the inception architecture for computer vision. In Proceedings of CVPR (pp. 2818–2826).

    Google Scholar 

  9. Krizhevsky, A. (2009). Learning multiple layers of features from tiny images. Technical Report, University of Toronto. https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf.

  10. Zhu, Y., Yao, Y., Wu, Z., Chen, Y., Li, G., Hu, H., Xu, Y. (2018). Gp-cnas: Convolutional neural network architecture search with genetic programming. arXiv:1812.07611.

  11. Bottou, L. (2012). Stochastic gradient descent tricks. In Neural networks: Tricks of the trade (2nd ed.) (pp. 421–436). Springer. ISBN 978-3-642-35289-8. https://doi.org/10.1007/978-3-642-35289-8_25.

  12. Simonyan, K., & Zisserman, A. (2015). Very deep convolutional networks for large-scale image recognition. In Proceedings of the 32nd International Conference on Machine Learning.

    Google Scholar 

  13. Liu, H., Simonyan, K., Vinyals, O., Fernand C., & Kavukcuoglu, K. (2017b). Hierarchical representations for efficient architecture search. arXiv:1711.00436.

  14. Xie, L., & Yuille, A. L. (2017). Genetic CNN. In IEEE International Conference on Computer Vision, ICCV 2017 (pp. 1388–1397). https://doi.org/10.1109/ICCV.2017.154.

  15. Real, E., Moore, S., Selle, A., Saxena, S., Suematsu, Y. L., Tan, J., Le, Q., & Kurakin, A. (2017). Large-scale evolution of image classifiers (pp. 2902–2911).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanan Sun .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sun, Y., Yen, G.G., Zhang, M. (2023). Encoding Space Based on Directed Acyclic Graphs. In: Evolutionary Deep Neural Architecture Search: Fundamentals, Methods, and Recent Advances. Studies in Computational Intelligence, vol 1070. Springer, Cham. https://doi.org/10.1007/978-3-031-16868-0_13

Download citation

Publish with us

Policies and ethics