Skip to main content

Formalising the Kruskal-Katona Theorem in Lean

  • Conference paper
  • First Online:
Intelligent Computer Mathematics (CICM 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13467))

Included in the following conference series:

Abstract

The Kruskal-Katona theorem is a celebrated result of extremal combinatorics providing precise cardinality bounds on the ‘shadow’ of a family of finite sets: the family given by removing an element from each set of the original. We describe a formalisation of the Kruskal-Katona theorem in the Lean theorem prover, including a computable implementation of the shadow as well as standard inequalities about it, and a definition of the colexicographic ordering on finite sets. In addition, we apply these results to other classical combinatorial theorems: Sperner’s theorem on antichains and the Erdős-Ko-Rado theorem on intersecting families.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/b-mehta/combinatorics.

References

  1. Alon, N.: Problems and results in extremal combinatorics-III. J. Comb. 7(2), 233–256 (2016)

    MathSciNet  MATH  Google Scholar 

  2. Anderson, I.: Combinatorics of Finite Sets. Courier Corporation (2002)

    Google Scholar 

  3. Bollobás, B.: On generalized graphs. Acta Math. Hungar. 16(3–4), 447–452 (1965)

    Article  MathSciNet  Google Scholar 

  4. Bollobás, B., Béla, B.: Combinatorics: Set Systems, Hypergraphs, Families of Vectors, and Combinatorial Probability. Cambridge University Press, Cambridge (1986)

    Google Scholar 

  5. Bollobás, B., Leader, I.: Compressions and isoperimetric inequalities. J. Comb. Theory Ser. A 56(1), 47–62 (1991)

    Article  MathSciNet  Google Scholar 

  6. Dahmen, S.R., Hölzl, J., Lewis, R.Y.: Formalizing the solution to the cap set problem. In: 10th International Conference on Interactive Theorem Proving, ITP 2019, pp. 1–19. Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2019)

    Google Scholar 

  7. Dillies, Y., Mehta, B.: Formalizing Szemerédi’s regularity lemma in lean. In: 13th International Conference on Interactive Theorem Proving (ITP 2022). Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2022, to appear)

    Google Scholar 

  8. Edmonds, C., Paulson, L.C.: Formalising fisher’s inequality: formal linear algebraic techniques in combinatorics. In: 13th International Conference on Interactive Theorem Proving (ITP 2022). Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2022, to appear)

    Google Scholar 

  9. Erdős, P., Ko, C., Rado, R.: Intersection theorems for systems of finite sets. Quart. J. Math. Oxford Ser. 2(12), 313–320 (1961)

    Article  MathSciNet  Google Scholar 

  10. Frankl, P., Tokushige, N.: Extremal Problems for Finite Sets, vol. 86. American Mathematical Soc. (2018)

    Google Scholar 

  11. Gowers, W.T.: The two cultures of mathematics. In: Mathematics: Frontiers and Perspectives vol. 65, p. 65 (1997)

    Google Scholar 

  12. Gusakov, A., Mehta, B., Miller, K.A.: Formalizing Hall’s Marriage Theorem in lean. arXiv preprint arXiv:2101.00127 (2021)

  13. Katona, G.: A theorem of finite sets. In: Classic Papers in Combinatorics, pp. 381–401. Springer, Boston (1968). https://doi.org/10.1007/978-0-8176-4842-8_27

  14. Leader, I.: Part III Combinatorics, December 2018. https://github.com/b-mehta/maths-notes/blob/master/iii/mich/combinatorics.pdf. Lecture notes transcribed by Mehta, B. Accessed May 2022

  15. Lubell, D.: A short proof of Sperner’s lemma. J. Comb. Theory 1(2), 299 (1966)

    Article  MathSciNet  Google Scholar 

  16. Marić, F., Živković, M., Vučković, B.: Formalizing Frankl’s conjecture: FC-families. In: Jeuring, J., et al. (eds.) CICM 2012. LNCS (LNAI), vol. 7362, pp. 248–263. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31374-5_17

    Chapter  Google Scholar 

  17. Meshalkin, L.D.: Generalization of Sperner’s theorem on the number of subsets of a finite set. Theory Probab. Appl. 8(2), 203–204 (1963)

    Article  MathSciNet  Google Scholar 

  18. de Moura, L., Kong, S., Avigad, J., van Doorn, F., von Raumer, J.: The lean theorem prover (system description). In: Felty, A.P., Middeldorp, A. (eds.) CADE 2015. LNCS (LNAI), vol. 9195, pp. 378–388. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21401-6_26

    Chapter  Google Scholar 

  19. Sperner, E.: Ein Satz über Untermengen einer endlichen Menge. Math. Z. 27(1), 544–548 (1928)

    Article  MathSciNet  Google Scholar 

  20. The mathlib Community: The Lean Mathematical Library. In: Proceedings of the 9th ACM SIGPLAN International Conference on Certified Programs and Proofs, CPP 2020, pp. 367–381. Association for Computing Machinery, New York (2020)

    Google Scholar 

  21. Yamamoto, K.: Logarithmic order of free distributive lattice. J. Math. Soc. Japan 6(3–4), 343–353 (1954)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

We would like to give particular thanks to Imre Leader for his inspiring lecture series with demonstrations of these proofs, Yaël Dillies for their continuous and determined efforts to migrate the code here to mathlib, and the anonymous reviewers for their helpful feedback.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhavik Mehta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mehta, B. (2022). Formalising the Kruskal-Katona Theorem in Lean. In: Buzzard, K., Kutsia, T. (eds) Intelligent Computer Mathematics. CICM 2022. Lecture Notes in Computer Science(), vol 13467. Springer, Cham. https://doi.org/10.1007/978-3-031-16681-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16681-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16680-8

  • Online ISBN: 978-3-031-16681-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics