Skip to main content

Online Reflective Learning for Robust Medical Image Segmentation

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Abstract

Deep segmentation models often face the failure risks when the testing image presents unseen distributions. Improving model robustness against these risks is crucial for the large-scale clinical application of deep models. In this study, inspired by human learning cycle, we propose a novel online reflective learning framework (RefSeg) to improve segmentation robustness. Based on the reflection-on-action conception, our RefSeg firstly drives the deep model to take action to obtain semantic segmentation. Then, RefSeg triggers the model to reflect itself. Because making deep models realize their segmentation failures during testing is challenging, RefSeg synthesizes a realistic proxy image from the semantic mask to help deep models build intuitive and effective reflections. This proxy translates and emphasizes the segmentation flaws. By maximizing the structural similarity between the raw input and the proxy, the reflection-on-action loop is closed with segmentation robustness improved. RefSeg runs in the testing phase and is general for segmentation models. Extensive validation on three medical image segmentation tasks with a public cardiac MR dataset and two in-house large ultrasound datasets show that our RefSeg remarkably improves model robustness and reports state-of-the-art performance over strong competitors.

Y. Huang and X. Yang—Contribute equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bergamo, A., Torresani, L.: Exploiting weakly-labeled web images to improve object classification: a domain adaptation approach. In: NeurIPS, pp. 181–189 (2010)

    Google Scholar 

  2. Billot, B., et al.: SynthSeg: domain randomisation for segmentation of brain MRI scans of any contrast and resolution. arXiv e-prints arXiv:2107.09559 (2021)

  3. Campello, V.M.: Multi-centre, multi-vendor and multi-disease cardiac segmentation: the M &Ms challenge. IEEE TMI 40(12), 3543–3554 (2021)

    Google Scholar 

  4. Chen, C., Liu, Q., Jin, Y., Dou, Q., Heng, P.-A.: Source-free domain adaptive fundus image segmentation with denoised pseudo-labeling. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12905, pp. 225–235. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87240-3_22

    Chapter  Google Scholar 

  5. Dou, Q., Coelho de Castro, D., Kamnitsas, K., Glocker, B.: Domain generalization via model-agnostic learning of semantic features. In: NeurIPS, vol. 32 (2019)

    Google Scholar 

  6. Full, P.M., Isensee, F., Jäger, P.F., Maier-Hein, K.: Studying robustness of semantic segmentation under domain shift in cardiac MRI. In: Puyol Anton, E., et al. (eds.) STACOM 2020. LNCS, vol. 12592, pp. 238–249. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68107-4_24

    Chapter  Google Scholar 

  7. Guan, H., Liu, M.: Domain adaptation for medical image analysis: a survey. IEEE T-BME 69, 1173–1185 (2021)

    Article  Google Scholar 

  8. He, Y., Carass, A., Zuo, L., et al.: Autoencoder based self-supervised test-time adaptation for medical image analysis. Media 72, 102136 (2021)

    Google Scholar 

  9. Huo, Y., et al.: SynSeg-Net: synthetic segmentation without target modality ground truth. IEEE TMI 38(4), 1016–1025 (2018)

    Google Scholar 

  10. Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021)

    Article  Google Scholar 

  11. Karani, N., Erdil, E., Chaitanya, K., Konukoglu, E.: Test-time adaptable neural networks for robust medical image segmentation. Media 68, 101907 (2021)

    Google Scholar 

  12. Kushibar, K., et al.: Supervised domain adaptation for automatic sub-cortical brain structure segmentation with minimal user interaction. Sci. Rep. 9(1), 1–15 (2019)

    Article  Google Scholar 

  13. Liang, J., et al.: Sketch guided and progressive growing GAN for realistic and editable ultrasound image synthesis. MedIA 79, 102461 (2022)

    Google Scholar 

  14. Liu, Q., Dou, Q., Heng, P.-A.: Shape-aware meta-learning for generalizing prostate MRI segmentation to unseen domains. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12262, pp. 475–485. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59713-9_46

    Chapter  Google Scholar 

  15. Liu, X., Thermos, S., O’Neil, A., Tsaftaris, S.A.: Semi-supervised meta-learning with disentanglement for domain-generalised medical image segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12902, pp. 307–317. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87196-3_29

    Chapter  Google Scholar 

  16. Liu, Z., et al.: Style curriculum learning for robust medical image segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12901, pp. 451–460. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87193-2_43

    Chapter  Google Scholar 

  17. Ma, J.: Histogram matching augmentation for domain adaptation with application to multi-centre, multi-vendor and multi-disease cardiac image segmentation. In: Puyol Anton, E., et al. (eds.) STACOM 2020. LNCS, vol. 12592, pp. 177–186. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68107-4_18

    Chapter  Google Scholar 

  18. Madani, A., Moradi, M., Karargyris, A., Syeda-Mahmood, T.: Semi-supervised learning with generative adversarial networks for chest X-ray classification with ability of data domain adaptation. In: ISBI, pp. 1038–1042. IEEE (2018)

    Google Scholar 

  19. Moshkov, N., Mathe, B., Kertesz-Farkas, A., Hollandi, R., Horvath, P.: Test-time augmentation for deep learning-based cell segmentation on microscopy images. Sci. Rep. 10(1), 1–7 (2020)

    Article  Google Scholar 

  20. Motiian, S., Piccirilli, M., Adjeroh, D.A., Doretto, G.: Unified deep supervised domain adaptation and generalization. In: ICCV, pp. 5715–5725 (2017)

    Google Scholar 

  21. Oktay, O., et al.: Attention U-Net: learning where to look for the pancreas. arXiv preprint arXiv:1804.03999 (2018)

  22. Sarvaiya, J.N., Patnaik, S., Bombaywala, S.: Image registration by template matching using normalized cross-correlation. In: International Conference on Advances in Computing, Control, and Telecommunication Technologies, pp. 819–822. IEEE (2009)

    Google Scholar 

  23. Shankar, S., Piratla, V., Chakrabarti, S., Chaudhuri, S., Jyothi, P., Sarawagi, S.: Generalizing across domains via cross-gradient training. In: ICLR (2018)

    Google Scholar 

  24. Shen, D., Wu, G., Suk, H.I.: Deep learning in medical image analysis. Annu. Rev. Biomed. Eng. 19, 221–248 (2017)

    Article  Google Scholar 

  25. Tobin, J., Fong, R., Ray, A., Schneider, J., Zaremba, W., Abbeel, P.: Domain randomization for transferring deep neural networks from simulation to the real world. In: IEEE IROS, pp. 23–30. IEEE (2017)

    Google Scholar 

  26. Volpi, R., Namkoong, H., Sener, O., Duchi, J., Murino, V., Savarese, S.: Generalizing to unseen domains via adversarial data augmentation. In: NeurIPS, pp. 5339–5349 (2018)

    Google Scholar 

  27. Wells, W.M., III., Viola, P., Atsumi, H., Nakajima, S., Kikinis, R.: Multi-modal volume registration by maximization of mutual information. Media 1, 35–51 (1996)

    Google Scholar 

  28. Xu, R., Chen, Y.W., Tang, S.Y., Morikawa, S., Kurumi, Y.: Parzen-window based normalized mutual information for medical image registration. IEICE Trans. Inf. Syst. 91(1), 132–144 (2008)

    Article  Google Scholar 

  29. Yang, X., et al.: Generalizing deep models for ultrasound image segmentation. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 497–505. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00937-3_57

    Chapter  Google Scholar 

  30. Zhang, Y., et al.: Semi-supervised cardiac image segmentation via label propagation and style transfer. In: Puyol Anton, E., et al. (eds.) STACOM 2020. LNCS, vol. 12592, pp. 219–227. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68107-4_22

    Chapter  Google Scholar 

  31. Zhang, Y., et al.: Collaborative unsupervised domain adaptation for medical image diagnosis. IEEE TIP 29, 7834–7844 (2020)

    MATH  Google Scholar 

Download references

Acknowledgement

This work was supported by the grant from National Natural Science Foundation of China (Nos. 62171290, 62101343), Shenzhen-Hong Kong Joint Research Program (No. SGDX20201103095613036), and Shenzhen Science and Technology Innovations Committee (No. 20200812143441001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Ni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, Y. et al. (2022). Online Reflective Learning for Robust Medical Image Segmentation. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13438. Springer, Cham. https://doi.org/10.1007/978-3-031-16452-1_62

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16452-1_62

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16451-4

  • Online ISBN: 978-3-031-16452-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics