Skip to main content

Bayesian Nonparametric Scalar-on-Image Regression via Potts-Gibbs Random Partition Models

  • Conference paper
  • First Online:
New Frontiers in Bayesian Statistics (BAYSM 2021)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 405))

Included in the following conference series:

  • 388 Accesses

Abstract

Scalar-on-image regression aims to investigate changes in a scalar response of interest based on high-dimensional imaging data. We propose a novel Bayesian nonparametric scalar-on-image regression model that utilises the spatial coordinates of the voxels to group voxels with similar effects on the response to have a common coefficient. We employ the Potts-Gibbs random partition model as the prior for the random partition in which the partition process is spatially dependent, thereby encouraging groups representing spatially contiguous regions. In addition, Bayesian shrinkage priors are utilised to identify the covariates and regions that are most relevant for the prediction. The proposed model is illustrated using the simulated data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cerquetti, A.: Generalized Chinese restaurant construction of exchangeable Gibbs partitions and related results. arXiv:0805.3853 (2008)

  2. Craddock, R.C., Holtzheimer, P.E., III., Hu, X.P., Mayberg, H.S.: Disease state prediction from resting state functional connectivity. Magn. Reson. Med. 62(6), 1619–1628 (2009)

    Google Scholar 

  3. Davatzikos, C., Shen, D., Gur, R.C., Wu, X., Liu, D., Fan, Y., Hughett, P., Turetsky, B.I., Gur, R.E.: Whole-brain morphometric study of schizophrenia revealing a spatially complex set of focal abnormalities. Arch. Gen. Psychiatry 62(11), 1218–1227 (2005)

    Article  Google Scholar 

  4. Debois, D., Ongena, M., Cawoy, H., De Pauw, E.: MALDI-FTICR MS imaging as a powerful tool to identify Paenibacillus antibiotics involved in the inhibition of plant pathogens. J. Am. Soc. Mass Spectrom. 24(8), 1202–1213 (2013)

    Article  Google Scholar 

  5. Fan, Y., Resnick, S.M., Wu, X., Davatzikos, C.: Structural and functional biomarkers of prodromal Alzheimer’s disease: a high-dimensional pattern classification study. NeuroImage 41(2), 277–285 (2008)

    Article  Google Scholar 

  6. Ferguson, T.S.: A Bayesian analysis of some nonparametric problems. Ann. Stat. 1, 209–230 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ferwerda, B., Schedl, M., Tkalcic, M.: Using instagram picture features to predict users’ personality. In: International Conference on Multimedia Modeling. Springer (2016)

    Google Scholar 

  8. Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6, 721–741 (1984)

    Article  MATH  Google Scholar 

  9. Gnedin, A., Pitman, J.: Exchangeable Gibbs partitions and Stirling triangles. J. Math. Sci. 138(3), 5674–5685 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Goldsmith, J., Huang, L., Crainiceanu, C.M.: Smooth scalar-on-image regression via spatial Bayesian variable selection. J. Comput. Graph Stat. 23(1), 46–64 (2014)

    Article  MathSciNet  Google Scholar 

  11. Gundlach-Graham, A., Burger, M., Allner, S., Schwarz, G., Wang, H.A.O., Gyr, L., Grolimund, D., Hattendorf, B., Günther, D.: High-speed, high-resolution, multielemental laser ablation-inductively coupled plasma-time-of-flight mass spectrometry imaging: Part i. instrumentation and two-dimensional imaging of geological samples. Anal. Chem. 87(16), 8250–8258 (2015)

    Google Scholar 

  12. Henderson, J.V., Storeygard, A., Weil, D.N.: Measuring economic growth from outer space. National Bureau of Economic Research, Cambridge, Mass (2009)

    Book  Google Scholar 

  13. Hu, G., Geng, J., Xue, Y., Sang, H.: Bayesian spatial homogeneity pursuit of functional data: an application to the U.S. income distribution. arXiv:2002.06663 (2020)

  14. Huang, L., Goldsmith, J., Reiss, P.T., Reich, D.S., Crainiceanu, C.M.: Bayesian scalar-on-image regression with application to association between intracranial DTI and cognitive outcomes. NeuroImage 83, 210–223 (2013)

    Article  Google Scholar 

  15. Hum, N.J., Chamberlin, P.E., Hambright, B.L., Portwood, A.C., Schat, A.C., Bevan, J.L.: A picture is worth a thousand words: a content analysis of Facebook profile photographs. Comput. Hum. Behav. 27(5), 1828–1833 (2011)

    Article  Google Scholar 

  16. Kang, J., Reich, B.J., Staicu, A.M.: Scalar-on-image regression via the soft-thresholded Gaussian process. Biometrika 105(1), 165–184 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kim, Y., Kim, J.H.: Using computer vision techniques on instagram to link users’ personalities and genders to the features of their photos: an exploratory study. Inf. Process. Manage. 54(6), 1101–1114 (2018)

    Article  Google Scholar 

  18. Lee, K., Cao, X.: Bayesian group selection in logistic regression with application to MRI data analysis. Biometrics 77(2), 391–400 (2021)

    Article  MathSciNet  Google Scholar 

  19. Li, F., Zhang, T., Wang, Q., Gonzalez, M.Z., Maresh, E.L., Coan, J.A.: Spatial Bayesian variable selection and grouping for high-dimensional scalar-on-image regression. Ann. Appl. Stat. 9(2), 687–713 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lijoi, A., Prünster, I.: Models beyond the Dirichlet process. In: Bayesian Nonparametrics (2010)

    Google Scholar 

  21. Lü, H., Arbel, J., Forbes, F.: Bayesian nonparametric priors for hidden Markov random fields. Stat. Comput. 30(4), 1015–1035 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  22. Maloof, K.A., Reinders, A.N., Tucker, K.R.: Applications of mass spectrometry imaging in the environmental sciences. Curr. Opin. Environ. Sci. Health. 18, 54–62 (2020)

    Article  Google Scholar 

  23. McCullagh, P., Nelder, J.A.: Generalized linear models. Routledge (2019)

    Google Scholar 

  24. Mehrotra, S., Maity, A.: Simultaneous variable selection, clustering, and smoothing in function-on-scalar regression. Can. J, Stat (2021)

    Google Scholar 

  25. Miller, J.W., Harrison, M.T.: Mixture models with a prior on the number of components. J. Am. Stat. Assoc. 113(521), 340–356 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  26. Naik, N., Kominers, S.D., Raskar, R., Glaeser, E.L., Hidalgo, C.A.: Computer vision uncovers predictors of physical urban change. Proc. Natl. Acad. Sci. U.S.A. 114(29), 7571–7576 (2017)

    Article  Google Scholar 

  27. Naik, N., Raskar, R., Hidalgo, C.A.: Cities are physical too: using computer vision to measure the quality and impact of urban appearance. Am. Econ. Rev. 106(5), 128–132 (2016)

    Article  Google Scholar 

  28. Neal, R.M.: Markov chain sampling methods for Dirichlet process mixture models. J. Comput. Graph Stat. 9(2), 249–265 (2000)

    MathSciNet  Google Scholar 

  29. Orbanz, P., Buhmann, J.M.: Nonparametric Bayesian image segmentation. Int. J. Comput. Vis. 77(1–3), 25–45 (2007)

    MATH  Google Scholar 

  30. O’Neill, S.J.: Image matters: climate change imagery in US. UK and Australian newspapers. Geoforum 49, 10–19 (2013)

    Article  Google Scholar 

  31. O’Neill, S.J., Boykoff, M., Niemeyer, S., Day, S.A.: On the use of imagery for climate change engagement. Glob. Environ. Change 23(2), 413–421 (2013)

    Article  Google Scholar 

  32. Pan, T., Hu, G., Shen, W.: Identifying latent groups in spatial panel data using a Markov random field constrained product partition model. arXiv:2012.10541 (2020)

  33. Perman, M., Pitman, J., Yor, M.: Size-biased sampling of Poisson point processes and excursions. Probab. Theory Relat. Fields 92(1), 21–39 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  34. Pitman, J.: Some developments of the Blackwell-Macqueen urn scheme. Lect. Notes-Monograph Ser. 30, 245–267 (1996)

    MathSciNet  Google Scholar 

  35. Pitman, J.: Lecture Notes in Mathematics. Springer (2006)

    Google Scholar 

  36. Potts, R.B., Domb, C.: Some generalized order-disorder transformations. Math. Proc. Cambridge Philos. Soc. 48(1), 106 (1952). https://doi.org/10.1017/S0305004100027419

    Article  MathSciNet  MATH  Google Scholar 

  37. Reiss, P., Mennes, M., Petkova, E., Huang, L., Hoptman, M., Biswal, B., Colcombe, S., Zuo, X., Milham, M.: Extracting information from functional connectivity maps via function-on-scalar regression. NeuroImage 56, 140–148 (2011)

    Article  Google Scholar 

  38. Samany, N.N.: Automatic landmark extraction from geo-tagged social media photos using deep neural network. Cities 93, 1–12 (2019)

    Article  Google Scholar 

  39. Shi, J., Lepore, N., Gutman, B., Thompson, P., Baxter, L., Caselli, R., Wang, Y.: Genetic influence of apolipoprotein E4 genotype on hippocampal morphometry: an N = 725 surface-based Alzheimer’s disease neuroimaging initiative study. Hum. Brain Mapp. 35(8), 3903–3918 (2014)

    Article  Google Scholar 

  40. Smith, M., Fahrmeir, L.: Spatial Bayesian variable selection with application to functional magnetic resonance imaging. J. Am. Stat. Assoc. 102(478), 417–431 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  41. Song, Q., Liang, F.: Nearly optimal Bayesian shrinkage for high dimensional regression. arXiv:1712.08964 (2017)

  42. Sun, D., van Erp, T.G., Thompson, P.M., Bearden, C.E., Daley, M., Kushan, L., Hardt, M.E., Nuechterlein, K.H., Toga, A.W., Cannon, T.D.: Elucidating a magnetic resonance imaging-based neuroanatomic biomarker for psychosis: Classification analysis using probabilistic brain atlas and machine learning algorithms. Biol. Psychiatry (1969) 66(11), 1055–1060 (2009)

    Google Scholar 

  43. Swendsen, R.H., Wang, J.S.: Nonuniversal critical dynamics in Monte Carlo simulations. Phys. Rev. Lett. 58(2), 86–88 (1987)

    Article  Google Scholar 

  44. Van Walderveen, M., Kamphorst, W., Scheltens, P., Van Waesberghe, J., Ravid, R., Valk, J., Polman, C., Barkhof, F.: Histopathologic correlate of hypointense lesions on T1-weighted spin-echo MRI in multiple sclerosis. Neurology 50(5), 1282–1288 (1998)

    Article  Google Scholar 

  45. Wade, S., Ghahramani, Z.: Bayesian cluster analysis: Point estimation and credible balls (with discussion). Bayesian Anal. 13(2), 559–626 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  46. Wang, X., Zhu, H., Initiative, A.D.N.: Generalized scalar-on-image regression models via total variation. J. Am. Stat. Assoc. 112(519), 1156–1168 (2017)

    Article  MathSciNet  Google Scholar 

  47. Xu, R.Y.D., Caron, F., Doucet, A.: Bayesian nonparametric image segmentation using a generalized Swendsen-Wang algorithm. arXiv:1602.03048 (2016)

  48. Zhao, P., Yang, H.C., Dey, D.K., Hu, G.: Bayesian spatial homogeneity pursuit regression for count value data. arXiv:2002.06678 (2020)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Wade .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Teo, M.S.X., Wade, S. (2022). Bayesian Nonparametric Scalar-on-Image Regression via Potts-Gibbs Random Partition Models. In: Argiento, R., Camerlenghi, F., Paganin, S. (eds) New Frontiers in Bayesian Statistics. BAYSM 2021. Springer Proceedings in Mathematics & Statistics, vol 405. Springer, Cham. https://doi.org/10.1007/978-3-031-16427-9_5

Download citation

Publish with us

Policies and ethics