Skip to main content

Neuromorphic Computing: A Path to Artificial Intelligence Through Emulating Human Brains

  • Chapter
  • First Online:
Frontiers of Quality Electronic Design (QED)

Abstract

The human brain is the most powerful computational machine in this world that has inspired artificial intelligence for many years. One of the latest outcomes of the reverse engineering neural system is deep learning, which emulates the multiple-layer structure of biological neural networks. Deep learning has achieved a variety of unprecedented successes in a large range of cognitive tasks. However, accompanied by the achievements, the shortcomings of deep learning are becoming more and more severe. These drawbacks include the demand for massive data, energy inefficiency, incomprehensibility, etc. One of the innate drawbacks of deep learning is that it implements artificial intelligence through the algorithms and software alone with no consideration of the potential limitations of computational resources. On the contrary, neuromorphic computing, also known as brain-inspired computing, emulates the biological neural networks through a software and hardware co-design approach and aims to break the shackles from the von Neumann architecture and digital representation of information within it. Thus, neuromorphic computing offers an alternative approach for next-generation AI that balances computational complexity, energy efficiency, biological plausibility, and intellectual competence. This chapter aims to comprehensively introduce neuromorphic computing from the fundamentals of biological neural systems, neuron models, to hardware implementations. Lastly, critical challenges and opportunities in neuromorphic computing are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kandel, E.R., Schwartz, J.H., Jessell, T.M., Siegelbaum, S.A., Hudspeth, A.: Principles of Neural Science. McGraw-Hill, New York (2000)

    Google Scholar 

  2. Baird, E., Srinivasan, M.V., Zhang, S., Cowling, A.: Visual control of flight speed in honeybees. J. Exp. Biol. 208(20), 3895–3905 (2005)

    Article  Google Scholar 

  3. Kern, R., Boeddeker, N., Dittmar, L., Egelhaaf, M.: Blowfly flight characteristics are shaped by environmental features and controlled by optic flow information. J. Exp. Biol. 215(14), 2501–2514 (2012)

    Article  Google Scholar 

  4. Haenlein, M., Kaplan, A.: A brief history of artificial intelligence: on the past, present, and future of artificial intelligence. Calif. Manag. Rev. 61(4), 5–14 (2019)

    Article  Google Scholar 

  5. A. M. Turing, Computing machinery and intelligence," in Parsing the Turing Test: Springer, Dordrecht 2009, pp. 23–65

    Google Scholar 

  6. Weizenbaum, J.: ELIZA—a computer program for the study of natural language communication between man and machine. Commun. ACM. 9(1), 36–45 (1966)

    Article  Google Scholar 

  7. Campbell, M., Hoane Jr., A.J., Hsu, F.-H.: Deep blue. Artif. Intell. 134(1–2), 57–83 (2002)

    Article  MATH  Google Scholar 

  8. Goodfellow, I., Yoshua, B., Aaron, C.: Deep Learning, p. 785 (2016). https://doi.org/10.1016/B978-0-12-391420-0.09987-X

  9. Bengio, Y., Goodfellow, I., Courville, A.: Deep Learning. MIT Press, Cambridge, MA (2017)

    MATH  Google Scholar 

  10. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  11. McCulloch, W.S., Pitts, W.: A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5(4), 115–133 (1943)

    Article  MathSciNet  MATH  Google Scholar 

  12. Aron, J.: How innovative is Apple’s new voice assistant, Siri? ed: Elsevier (2011)

    Google Scholar 

  13. Hoy, M.B.: Alexa, Siri, Cortana, and more: an introduction to voice assistants. Med. Ref. Serv. Q. 37(1), 81–88 (2018)

    Article  Google Scholar 

  14. Greenblatt, N.A.: Self-driving cars and the law. IEEE Spectr. 53(2), 46–51 (2016)

    Article  MathSciNet  Google Scholar 

  15. Pedrycz, W., Chen, S.-M.: Deep Learning : Algorithms and Applications. Springer, Cham (2020)

    Book  Google Scholar 

  16. Gibney, E.: Google AI algorithm masters ancient game of Go. Nat. News. 529(7587), 445 (2016)

    Article  Google Scholar 

  17. Mead, C.: Neuromorphic electronic systems. Proc. IEEE. 78(10), 1629–1636 (1990)

    Article  Google Scholar 

  18. Soediono, B.: The handbook of brain theory and neural networks. J. Chem. Inf. Model. 53, 719–725 (1989). https://doi.org/10.1017/CBO9781107415324.004

    Article  Google Scholar 

  19. y Cajal, S.R.: Comparative Study of the Sensory Areas of the Human Cortex, Clark University, Worcester (1899)

    Google Scholar 

  20. Bear, M.F., Connors, B.W., Paradiso, M.A.: Neuroscience. Lippincott Williams & Wilkins, Philadelphia (2007)

    Google Scholar 

  21. P. I. Pavlov, "Conditioned reflexes: an investigation of the physiological activity of the cerebral cortex," Ann. Neurosci., vol. 17, no. 3, p. 136, Jul 2010, doi: https://doi.org/10.5214/ans.0972-7531.1017309

  22. H. An, An, Q., Yi, Y.: Realizing behavior level associative memory learning through three-dimensional Memristor-based neuromorphic circuits. In: IEEE Transactions on Emerging Topics in Computational Intelligence (2019)

    Google Scholar 

  23. Brunel, N., Van Rossum, M.C.: Lapicque’s 1907 paper: from frogs to integrate-and-fire. Biol. Cybern. 97(5), 337–339 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Orhan, E.: The Leaky Integrate-and-Fire Neuron Model, pp. 1–6 (2012)

    Google Scholar 

  25. Fuortes, M., Mantegazzini, F.: Interpretation of the repetitive firing of nerve cells. J. Gen. Physiol. 45(6), 1163–1179 (1962)

    Article  Google Scholar 

  26. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. Bull. Math. Biol. 52, 25–71 (1990). https://doi.org/10.1007/BF02459568

    Article  Google Scholar 

  27. Izhikevich, E.M.: Simple model of spiking neurons. IEEE Trans. Neural Netw. 14, 1569–1572 (2003). https://doi.org/10.1109/TNN.2003.820440

    Article  Google Scholar 

  28. Darian-Smith, I., Johnson, K., Dykes, R.: “Cold” fiber population innervating palmar and digital skin of the monkey: responses to cooling pulses. J. Neurophysiol. 36(2), 325–346 (1973)

    Article  Google Scholar 

  29. Adrian, E.D.: The impulses produced by sensory nerve endings: part I. J. Physiol. 61(1), 49–72 (1926)

    Article  Google Scholar 

  30. Panzeri, S., Brunel, N., Logothetis, N.K., Kayser, C.: Sensory neural codes using multiplexed temporal scales. Trends Neurosci. 33, 111–120 (2010). https://doi.org/10.1016/j.tins.2009.12.001

    Article  Google Scholar 

  31. Zhao, C., Yi, Y., Li, J., Fu, X., Liu, L.: Interspike-interval-based analog spike-time-dependent encoder for neuromorphic processors. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 25, 2193–2205 (2017). https://doi.org/10.1109/TVLSI.2017.2683260

    Article  Google Scholar 

  32. Zhao, C., et al.: Energy efficient temporal spatial information processing circuits based on STDP and spike iteration. IEEE Trans. Circuits Syst. II. 67(10), 1715–1719 (2019)

    Article  Google Scholar 

  33. Averbeck, B.B., Latham, P.E., Pouget, A.: Neural correlations, population coding and computation. Nat. Rev. Neurosci. 7(5), 358–366 (2006)

    Article  Google Scholar 

  34. Pasupathy, A., Connor, C.E.: Population coding of shape in area V4. Nat. Neurosci. 5(12), 1332–1338 (2002)

    Article  Google Scholar 

  35. Panzeri, S., Macke, J.H., Gross, J., Kayser, C.: Neural population coding: combining insights from microscopic and mass signals. Trends Cogn. Sci. 19(3), 162–172 (2015)

    Article  Google Scholar 

  36. Pouget, A., Dayan, P., Zemel, R.: Information processing with population codes. Nat. Rev. Neurosci. 1(2), 125–132 (2000)

    Article  Google Scholar 

  37. Gerstner, W., Kistler, W.M.: Spiking Neuron Models: Single Neurons, Populations, Plasticity. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  38. Liu, J.-H., Wang, C.-Y., An, Y.-Y.: A Survey of neuromorphic vision system: biological nervous systems realized on silicon. In: 2009 International Conference on Industrial Mechatronics and Automation, IEEE, pp. 154–157 (2009)

    Google Scholar 

  39. Indiveri, G., et al.: Neuromorphic silicon neuron circuits (in English). Front. Neurosci., Review 5 (2011, May 31) https://doi.org/10.3389/fnins.2011.00073

  40. Poon, C.S., Zhou, K.: Neuromorphic silicon neurons and large-scale neural networks: challenges and opportunities. Front. Neurosci. 5, 2009–2011 (2011). https://doi.org/10.3389/fnins.2011.00108

    Article  Google Scholar 

  41. Ahmed, M.R., Sujatha, B.K.: A review on methods, issues and challenges in neuromorphic engineering. In: 2015 International Conference on Communications and Signal Processing (ICCSP), pp. 899–903 (2015). https://doi.org/10.1109/ICCSP.2015.7322626

  42. Schuman, C.D., Ridge, O., Disney, A.: Dynamic adaptive neural network arrays: a neuromorphic architecture. In: Proceedings of the Workshop on Machine Learning in High-Performance Computing Environments – MLHPC’15, pp. 1–4 (2015). https://doi.org/10.1145/2834892.2834895

  43. Yi, Y., et al.: FPGA based spike-time dependent encoder and reservoir design in neuromorphic computing processors. Microprocess. Microsyst. 46, 175–183 (2016). https://doi.org/10.1016/j.micpro.2016.03.009

    Article  Google Scholar 

  44. Sun, J.: CMOS and Memristor Technologies for Neuromorphic Computing Applications (2015)

    Google Scholar 

  45. Babacan, Y., Kaçar, F., Gürkan, K.: A spiking and bursting neuron circuit based on memristor. Neurocomputing. 203, 86–91 (2016). https://doi.org/10.1016/j.neucom.2016.03.060

    Article  Google Scholar 

  46. An, H., Ehsan, M.A., Zhou, Z., Shen, F., Yi, Y.: Monolithic 3D neuromorphic computing system with hybrid CMOS and memristor-based synapses and neurons. Integr. VLSI J. (2017)

    Google Scholar 

  47. An, H., Al-Mamun, M.S., Orlowski, M., Yi, Y.: A three-dimensional (3D) Memristive Spiking Neural Network (M-SNN) system. In: International Symposium on Quality Electronic Design (2021)

    Google Scholar 

  48. An, H., Ha, D.S., Yi, Y.: Powering next-generation industry 4.0 by a self-learning and low-power neuromorphic system. In: Proceedings of the 7th ACM International Conference on Nanoscale Computing and Communication, pp. 1–6 (2020)

    Google Scholar 

  49. An, H.: Powering Next-Generation Artificial Intelligence by Designing Three-Dimensional High-Performance Neuromorphic Computing System with Memristors. Virginia Tech (2020)

    Google Scholar 

  50. Mead, C.: How we created neuromorphic engineering. Nat. Electron. 3(7), 434–435 (2020)

    Article  Google Scholar 

  51. Izhikevich, E.M.: Dynamical systems in neuroscience computational neuroscience. Dyn. Syst. 25, 227–256 (2007). https://doi.org/10.1017/S0143385704000173

    Article  Google Scholar 

  52. Izhikevich, E.M.: Which model to use for cortical spiking neurons? IEEE Trans. Neural Netw. 15(5), 1063–1070 (2004)

    Article  Google Scholar 

  53. Brette, R., Gerstner, W.: Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. J. Neurophysiol. 94(5), 3637–3642 (2005)

    Article  Google Scholar 

  54. Jolivet, R., Lewis, T.J., Gerstner, W.: Generalized integrate-and-fire models of neuronal activity approximate spike trains of a detailed model to a high degree of accuracy. J. Neurophysiol. 92(2), 959–976 (2004)

    Article  Google Scholar 

  55. Livi, P., Indiveri, G.: A current-mode conductance-based silicon neuron for address-event neuromorphic systems. In: 2009 IEEE international symposium on circuits and systems, IEEE, pp. 2898–2901 (2009)

    Google Scholar 

  56. Wijekoon, J.H.B., Dudek, P.: Compact silicon neuron circuit with spiking and bursting behaviour. Neural Netw. 21, 524–534 (2008). https://doi.org/10.1016/j.neunet.2007.12.037

    Article  Google Scholar 

  57. Van Schaik, A., Jin, C., McEwan, A., Hamilton, T.J., Mihalas, S., Niebur, E.: A log-domain implementation of the Mihalas-Niebur neuron model. In: Proceedings of 2010 IEEE International Symposium on Circuits and Systems, IEEE, pp. 4249–4252 (2010)

    Google Scholar 

  58. Schaik, V., Jin, C., McEwan, A., Hamilton, T.J.: A log-domain implementation of the Izhikevich neuron model. In: ISCAS 2010–2010 IEEE International Symposium on Circuits and Systems: Nano-Bio Circuit Fabrics and Systems, pp. 4253–4256 (2010). doi: https://doi.org/10.1109/ISCAS.2010.5537564

  59. Ma, Q., Haider, M.R., Shrestha, V.L., Massoud, Y.: Bursting Hodgkin–Huxley model-based ultra-low-power neuromimetic silicon neuron. Analog Integr. Circ. Sig. Process. 73(1), 329–337 (2012)

    Article  Google Scholar 

  60. Yu, T., Sejnowski, T.J., Cauwenberghs, G.: Biophysical neural spiking, bursting, and excitability dynamics in reconfigurable analog VLSI. IEEE Trans. Biomed. Circuits Syst. 5(5), 420–429 (2011)

    Article  Google Scholar 

  61. Abbott, L.F.: Lapicque’s introduction of the integrate-and-fire model neuron (1907). Brain Res. Bull. 50, 303–304 (1999). https://doi.org/10.1016/S0361-9230(99)00161-6

    Article  Google Scholar 

  62. Stein, R.B.: A theoretical analysis of neuronal variability. Biophys. J. 5(2), 173 (1965)

    Article  Google Scholar 

  63. Rozenberg, M., Schneegans, O., Stoliar, P.: An ultra-compact leaky-integrate-and-fire model for building spiking neural networks. Sci. Rep. 9(1), 1–7 (2019)

    Article  Google Scholar 

  64. Chatterjee, D., Kottantharayil, A.: A CMOS compatible bulk FinFET-based ultra low energy leaky integrate and fire neuron for spiking neural networks. IEEE Electron Device Lett. 40(8), 1301–1304 (2019)

    Article  Google Scholar 

  65. Dutta, S., Kumar, V., Shukla, A., Mohapatra, N.R., Ganguly, U.: Leaky integrate and fire neuron by charge-discharge dynamics in floating-body MOSFET. Sci. Rep. 7(1), 1–7 (2017)

    Article  Google Scholar 

  66. Demirkol, A.Ş., Özoğuz, S.: A low power real time izhikevich neuron with synchronous network behavior. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi. 12(24), 39–52 (2013)

    Google Scholar 

  67. Chua, L.: Memristor-the missing circuit element. IEEE Trans. Circuit Theory. 18(5), 507–519 (1971)

    Article  Google Scholar 

  68. Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found (in English). Nature. 453(7191), 80–83 (2008). https://doi.org/10.1038/nature06932

    Article  Google Scholar 

  69. Williams, S.R.: How we found the missing memristor. Spectrum IEEE. 45(12), 28–35 (2008)

    Article  Google Scholar 

  70. Keshmiri, V.: A Study of the Memristor Models and Applications (2014)

    Google Scholar 

  71. Wong, H.S.P., et al.: Metal-oxide RRAM. Proc. IEEE. 100, 1951–1970 (2012). https://doi.org/10.1109/JPROC.2012.2190369

    Article  Google Scholar 

  72. Strukov, D.B., Borghetti, J.L., Williams, R.S.: Coupled ionic and electronic transport model of thin-film semiconductor memristive behavior (in English). Small. 5(9), 1058–1063 (2009). https://doi.org/10.1002/smll.200801323

    Article  Google Scholar 

  73. Jo, S.H., Chang, T., Ebong, I., Bhadviya, B.B., Mazumder, P., Lu, W.: Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 10(4), 1297–1301 (2010)

    Article  Google Scholar 

  74. Stefanovich, G., Pergament, A., Stefanovich, D.: Electrical switching and Mott transition in VO2. J. Phys. Condens. Matter. 12(41), 8837 (2000)

    Article  Google Scholar 

  75. Honig, J., Reed, T.: Electrical properties of Ti 2 O 3 single crystals. Phys. Rev. 174(3), 1020 (1968)

    Article  Google Scholar 

  76. Chen, J.Y., et al.: Dynamic evolution of conducting nanofilament in resistive switching memories. Nano Lett. 13(8), 3671–3677 (2013). https://doi.org/10.1021/nl4015638

    Article  Google Scholar 

  77. Simmons, J., Verderber, R.: New conduction and reversible memory phenomena in thin insulating films. Proc. R. Soc. London, Ser. A. 301(1464), 77–102 (1967)

    Article  Google Scholar 

  78. Argall, F.: Switching phenomena in titanium oxide thin films. Solid State Electron. 11, 535–541 (1968). https://doi.org/10.1016/0038-1101(68)90092-0

    Article  Google Scholar 

  79. Balanis, C.A.: Advanced Engineering Electromagnetics. John Wiley & Sons, New York (2012)

    Google Scholar 

  80. Swaroop, B., West, W., Martinez, G., Kozicki, M., Akers, L.: Programmable current mode Hebbian learning neural network using programmable metallization cell. In: ISCAS’98. Proceedings of the 1998 IEEE International Symposium on Circuits and Systems (Cat. No. 98CH36187), vol. 3, IEEE, pp. 33–36 (1998)

    Google Scholar 

  81. Akopyan, F., et al.: True north: design and tool flow of a 65 mW 1 million neuron programmable neurosynaptic chip (in English). IEEE Trans. Comput-Aided Des. Integr. Circuits Syst. 34(10), 1537–1557 (2015). https://doi.org/10.1109/tcad.2015.2474396

    Article  Google Scholar 

  82. An, H., Ehsan, M.A., Zhou, Z., Yi, Y.: Electrical Modeling and Analysis of 3D Neuromorphic IC with Monolithic Inter-tier Vias.

    Google Scholar 

  83. Yi, Y., Li, P., Sarin, V., Shi, W.: Impedance extraction for 3-D structures with multiple dielectrics using preconditioned boundary element method. In: 2007 IEEE/ACM International Conference on Computer-Aided Design, IEEE, pp. 7–10 (2007)

    Google Scholar 

  84. Xu, C., Niu, D., Yu, S., Xie, Y.: Modeling and design analysis of 3D vertical resistive memory—a low cost cross-point architecture. In: 2014 19th Asia and South Pacific Design Automation Conference (ASP-DAC), IEEE, pp. 825–830 (2014)

    Google Scholar 

  85. Yi, Y., Li, P., Sarin, V., Shi, W.: A preconditioned hierarchical algorithm for impedance extraction of three-dimensional structures with multiple dielectrics. IEEE Trans. Comput-Aided Des. Integr. Circuits Syst. 27(11), 1918–1927 (2008)

    Article  Google Scholar 

  86. Yi, Y., Zhou, Y., Fu, X., Shen, F.: Modeling differential through-silicon-vias (TSVs) with voltage dependent and nonlinear capacitance. Cyber J. 3(6), 234–241 (2013)

    Google Scholar 

  87. Yang, C.-C., et al.: Footprint-efficient and power-saving monolithic IoT 3D+ IC constructed by BEOL-compatible sub-10nm high aspect ratio (AR>7) single-grained Si FinFETs with record high Ion of 0.38 mA/μm and steep-swing of 65 mV/dec. and I<inf>on</inf>/I<inf>off</inf> ratio of 8," pp. 9.1.1–9.1.4 (2016). https://doi.org/10.1109/iedm.2016.7838379

  88. Shulaker, M.M., et al.: Monolithic 3D integration of logic and memory: Carbon nanotube FETs, resistive RAM, and silicon FETs. In: Electron Devices Meeting (IEDM), 2014 IEEE International, IEEE, pp. 27.4.1–27.4.4 (2014). https://doi.org/10.1109/IEDM.2014.7047120

  89. Shulaker, M.M., et al.: Three-dimensional integration of nanotechnologies for computing and data storage on a single chip. Nature. 547(7661), 74–78 (2017). https://doi.org/10.1038/nature22994

    Article  Google Scholar 

  90. Davies, M., et al.: Advancing neuromorphic computing with Loihi: a survey of results and outlook. Proc. IEEE. 109, 911–934 (2021)

    Article  Google Scholar 

  91. Davies, M., et al.: Loihi: a neuromorphic manycore processor with on-chip learning. IEEE Micro. 38(1), 82–99 (2018)

    Article  Google Scholar 

  92. Shrestha, S.B., Orchard, G.: Slayer: Spike layer error reassignment in time, arXiv preprint arXiv:1810.08646 (2018)

    Google Scholar 

  93. DiLuoffo, V., Michalson, W.R., Sunar, B.: Robot operating system 2: the need for a holistic security approach to robotic architectures. Int. J. Adv. Robot. Syst. 15(3), 1729881418770011 (2018)

    Article  Google Scholar 

  94. Rao, D., McMahan, B.: Natural Language Processing with PyTorch: Build Intelligent Language Applications Using Deep Learning, 1st ed. O’Reilly Media, Beijing, p. 1 online resource [Online] (2019). Available: http://proquest.safaribooksonline.com/9781491978221

  95. Bekolay, T., et al.: Nengo: a python tool for building large-scale functional brain models. Front. Neuroinform. 7, 48 (2014)

    Article  Google Scholar 

  96. Goodman, D.F., Brette, R.: The brian simulator. Front. Neurosci. 3, 26 (2009)

    Article  Google Scholar 

  97. Imam, N., Cleland, T.A.: Rapid online learning and robust recall in a neuromorphic olfactory circuit. Nat. Mach. Intell. 2(3), 181–191 (2020)

    Article  Google Scholar 

  98. Moradi, S., Qiao, N., Stefanini, F., Indiveri, G.: A scalable multicore architecture with heterogeneous memory structures for dynamic neuromorphic asynchronous processors (DYNAPs). IEEE Trans. Biomed. Circuits Syst. 12(1), 106–122 (2017)

    Article  Google Scholar 

  99. Thakur, C.S., et al.: Large-scale neuromorphic spiking Array processors: a quest to mimic the brain (in English). Front. Neurosci., Review. 12(891) (2018). https://doi.org/10.3389/fnins.2018.00891

  100. Bauer, F.C., Muir, D.R., Indiveri, G.: Real-time ultra-low power ECG anomaly detection using an event-driven neuromorphic processor. IEEE Trans. Biomed. Circuits Syst. 13(6), 1575–1582 (2019)

    Article  Google Scholar 

  101. Sharifshazileh, M., Burelo, K., Sarnthein, J., Indiveri, G.: An electronic neuromorphic system for real-time detection of high frequency oscillations (HFO) in intracranial EEG. Nat. Commun. 12(1), 1–14 (2021)

    Article  Google Scholar 

  102. Akopyan, F., et al.: TrueNorth: design and tool flow of a 65 mW 1 million neuron programmable neurosynaptic chip. IEEE Trans. Comput-Aided Des. Integr. Circuits Syst. 34(10), 1537–1557 (2015). https://doi.org/10.1109/TCAD.2015.2474396

    Article  Google Scholar 

  103. Benjamin, B., et al.: Neurogrid: a mixed-analog-digital multichip system for large-scale neural simulations (in English). Proc. IEEE. 102(5), 699–716 (2014). https://doi.org/10.1109/Jproc.2014.2313565

    Article  Google Scholar 

  104. Models, P., Circuits, N., Project, H.B.: Physical Models of Neural Circuits in BrainScaleS and the Human Brain Project Status and Plans

    Google Scholar 

  105. Meier, K.: A mixed-signal universal neuromorphic computing system. In: 2015 IEEE International Electron Devices Meeting (IEDM), IEEE, pp. 4.6.1–4.6.4 (2015)

    Google Scholar 

  106. Schemmel, J., Bruderle, D., Grubl, A., Hock, M., Meier, K., Millner, S.: A wafer-scale neuromorphic hardware system for large-scale neural modeling. In: Circuits and Systems (ISCAS), Proceedings of 2010 IEEE International Symposium on, IEEE, pp. 1947–1950 (2010)

    Google Scholar 

  107. Appukuttan, S., Bologna, L., Migliore, M., Schürmann, F., Davison, A.: EBRAINS Live Papers-Interactive resource sheets for computational studies in neuroscience (2021)

    Google Scholar 

  108. Markram, H.: The human brain project. Sci. Am. 306(6), 50–55 (2012)

    Article  Google Scholar 

  109. Calimera, A., Macii, E., Poncino, M.: The human brain project and neuromorphic computing. Funct. Neurol. 28, 191–196 (2013). https://doi.org/10.11138/FNeur/2013.28.3.191

    Article  Google Scholar 

  110. Peppicelli, D., et al.: Human Brain Project. Neurorobotics Platform Specification, pp. 1–79 (2015)

    Google Scholar 

  111. Schirner, M., et al.: Brain Modelling as a Service: The Virtual Brain on EBRAINS, arXiv preprint arXiv:2102.05888 (2021)

    Google Scholar 

  112. Andrychowicz, O.M., et al.: Learning dexterous in-hand manipulation. Int. J. Robot. Res. 39(1), 3–20 (2020)

    Article  Google Scholar 

  113. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate, arXiv preprint arXiv:1409.0473 (2014)

    Google Scholar 

  114. Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidirectional transformers for language understanding, arXiv preprint arXiv:1810.04805 (2018)

    Google Scholar 

  115. Goodfellow, I., Bengio, Y., Courville, A., Bengio, Y.: Deep Learning. MIT Press, Cambridge, MA (2016)

    MATH  Google Scholar 

  116. Sun, C., Shrivastava, A., Singh, S., Gupta, A.: Revisiting unreasonable effectiveness of data in deep learning era. In: Proceedings of the IEEE International Conference on Computer Vision, vol. 2017-Octob, pp. 843–852 (2017). https://doi.org/10.1109/ICCV.2017.97

  117. Deng, L., Tang, H., Roy, K.: Understanding and bridging the gap between neuromorphic computing and machine learning. Front. Comput. Neurosci. 15 (2021)

    Google Scholar 

  118. Roy, K., Jaiswal, A., Panda, P.: Towards spike-based machine intelligence with neuromorphic computing. Nature. 575(7784), 607–617 (2019)

    Article  Google Scholar 

  119. Arthur, I.J., Dada, P.: Algorithm Prototyping, Development, and Deployment for TrueNorth: The Caffe ­ Tea Case Study (2015)

    Google Scholar 

  120. Sze, V., Chen, Y.-H., Yang, T.-J., Emer, J.S.: Efficient processing of deep neural networks: a tutorial and survey. Proc. IEEE. 105(12), 2295–2329 (2017)

    Article  Google Scholar 

  121. An, H., Zhou, Z., Yi, Y.: Opportunities and challenges on nanoscale 3D neuromorphic computing system. In: Electromagnetic Compatibility & Signal/Power Integrity (EMCSI), 2017 IEEE International Symposium on, IEEE, pp. 416–421 (2017)

    Google Scholar 

  122. Severa, W., Vineyard, C.M., Dellana, R., Verzi, S.J., Aimone, J.B.: Training deep neural networks for binary communication with the Whetstone method. Nat. Mach. Intell. 1(2), 86 (2019)

    Article  Google Scholar 

  123. Drazen, D., Lichtsteiner, P., Häfliger, P., Delbrück, T., Jensen, A.: Toward real-time particle tracking using an event-based dynamic vision sensor. Exp. Fluids. 51(5), 1465 (2011)

    Article  Google Scholar 

  124. Delbruck, T., Lang, M.: Robotic goalie with 3 ms reaction time at 4% CPU load using event-based dynamic vision sensor. Front. Neurosci. 7, 223 (2013)

    Article  Google Scholar 

  125. Blum, H., Dietmüller, A., Milde, M., Conradt, J., Indiveri, G., Sandamirskaya, Y.: A neuromorphic controller for a robotic vehicle equipped with a dynamic vision sensor. Robot. Sci. Syst. 2017 (2017)

    Google Scholar 

  126. Dominguez-Morales, M.J., Jimenez-Fernandez, A., Jiménez-Moreno, G., Conde, C., Cabello, E., Linares-Barranco, A.: Bio-inspired stereo vision calibration for dynamic vision sensors. IEEE Access. 7, 138415–138425 (2019)

    Article  Google Scholar 

  127. Choi, S.-Y., Kim, J.-S., Seo, J.-H.: A study on the reduction of power consumption and the improvement of motion blur for OLED displays. J. Korean Inst. IIIum. Electr. Install. Eng. 30(3), 1–8 (2016)

    Google Scholar 

  128. Chen, G., et al.: Neuromorphic vision based multivehicle detection and tracking for intelligent transportation system. J. Adv. Transport. 2018, 4815383 (2018)

    Article  Google Scholar 

  129. Anumula, J., Neil, D., Delbruck, T., Liu, S.-C.: Feature representations for neuromorphic audio spike streams. Front. Neurosci. 12, 23 (2018)

    Article  Google Scholar 

  130. Liu, S.C., Delbruck, T.: Neuromorphic sensory systems. Curr. Opin. Neurobiol. 20, 288–295 (2010). https://doi.org/10.1016/j.conb.2010.03.007

    Article  Google Scholar 

  131. Richter, C., et al.: Musculoskeletal robots: scalability in neural control. IEEE Robot. Autom. Mag. 23, 128–137 (2016). https://doi.org/10.1109/MRA.2016.2535081

    Article  Google Scholar 

  132. Vanarse, A., Osseiran, A., Rassau, A.: A review of current neuromorphic approaches for vision, auditory, and olfactory sensors. Front. Neurosci. 10, 115 (2016)

    Article  Google Scholar 

  133. Sheng, M., Sabatini, B.L., Südhof, T.C.: Synapses and Alzheimer’s disease. Cold Spring Harb. Perspect. Biol. 4(5), a005777 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongyu An .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zins, N., Zhang, Y., Yu, C., An, H. (2023). Neuromorphic Computing: A Path to Artificial Intelligence Through Emulating Human Brains. In: Iranmanesh, A. (eds) Frontiers of Quality Electronic Design (QED). Springer, Cham. https://doi.org/10.1007/978-3-031-16344-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16344-9_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16343-2

  • Online ISBN: 978-3-031-16344-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics