Skip to main content

Integrating Nanosensors into Stem Cells Technologies and Regenerative Medicine

Handbook of Nanosensors

Abstract

This work explores the revolutionary potential that arises from combining nanosensors with stem cell technologies and regenerative medicine. The objective is to revolutionize the field of medical treatments by integrating nanosensors into these advanced technologies and therapeutic approaches, offering new possibilities for a diverse array of conditions. The primary aim is to investigate and analyze the benefits, challenges, and ethical complexities that emerge when incorporating nanosensors into these cutting-edge medical practices. By conducting a thorough examination of these crucial elements, we will acquire a more profound understanding of the wide-ranging impacts of this technology, as well as the crucial decisions that need to be addressed and resolved before moving forward.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

ADI:

Active Drug Ingredients

AI:

Artificial Intelligence

Ar-ion:

Argon-Ion

Au:

Gold (chemical symbol)

Au/Pd:

Gold/Palladium

CT:

Computed Tomography

EVB:

Exhaled Volatile Biomarkers

FON:

Film Over Nanosphere

iPSCs:

Induced Pluripotent Stem Cells

LSPR:

Localized Surface Plasmon Resonance

MFON:

Metal Film Over Nanosphere

MRI:

Magnetic Resonance Imaging

NO:

Nitric Oxide

NP:

Nanoparticle

NS:

Nanosensors

NSL:

Nanosphere Lithography

Or Mo Sil:

Organically Modified Silicate

PAI:

Photoacoustic Imaging

pH:

Potential of Hydrogen

RM:

Regenerative Medicine

RTD:

Real-Time Data

SC:

Stem Cells

SCT:

Stem Cell Technologies

SEM:

Scanning Electron Microscopy

SERS:

Surface-Enhanced Raman Scattering

SI:

Sensors International

SNS:

Smart nanosensors

UV:

Ultraviolet

X-rays:

X-ray Radiography

References

  1. Chakraborty S, Bera D, Roy L, Ghosh CK (2023) Biomimetic and bioinspired nanostructures: recent developments and applications. In: Bioinspired and green synthesis of nanostructures: a sustainable approach. Wiley, Hoboken, pp 353–404

    Chapter  Google Scholar 

  2. Sagadevan S, Periasamy M (2014) Recent trends in nanobiosensors and their applications – a review. Rev Adv Mater Sci 36(2014):62–69

    CAS  Google Scholar 

  3. Javaid M, Haleem A, Rab S, Singh RP, Suman R (2021) Sensors for daily life: a review. Sensors Int 2:100121

    Article  Google Scholar 

  4. Thalji MR, Ibrahim AA, Chong KF, Soldatov AV, Ali GAM (2022) Glycopolymer-based materials: synthesis, properties, and biosensing applications. Top Curr Chem 380(5):45

    Article  CAS  Google Scholar 

  5. Salehi Rozveh Z, Kazemi S, Karimi M, Ali GAM, Safarifard V (2020) Effect of functionalization of metal-organic frameworks on anion sensing. Polyhedron 183:114514

    Article  Google Scholar 

  6. Fouad OA, Ali GAM, El-Erian MAI, Makhlouf SA (2012) Humidity sensing properties of cobalt oxide/silica nanocomposites prepared via sol-gel and related routes. Nano 7(5):1250038

    Article  Google Scholar 

  7. Pourtaheri E, Taher MA, Ali GA, Agarwal S, Gupta VK (2019) Low-cost and highly sensitive sensor for determining atorvastatin using PbTe nanoparticles-modified graphite screen-printed electrode. Int J Electrochem Sci 14:9622–9632

    Article  CAS  Google Scholar 

  8. Singh M, Doli AY, Kaushik S, Gupta N, Singh G, Gupta P (2022) 8 air and water pollution monitoring and control through. In: Bionanotechnology towards sustainable management of environmental pollution. CRC Press, Boca Raton, p 183

    Chapter  Google Scholar 

  9. Norizan M, Zulaikha NS, Norhana A, Syakir MI, Norli A (2021) Carbon nanotubes-based sensor for ammonia gas detection – an overview. Polimery 66(3):175–186

    Article  Google Scholar 

  10. Xiong Y, Huang Q, Canady TD, Barya P, Liu S, Arogundade OH, Race CM, Che C, Wang X, Zhou L (2022) Photonic crystal enhanced fluorescence emission and blinking suppression for single quantum dot digital resolution biosensing. Nat Commun 13(1):4647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Li J, Wu D, Yu Y, Li T, Li K, Xiao M-M, Li Y, Zhang Z-Y, Zhang G-J (2021) Rapid and unamplified identification of COVID-19 with morpholino-modified graphene field-effect transistor nanosensor. Biosens Bioelectron 183:113206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rani P (2022) Nanosensors and their potential role in internet of medical things. In: Nanosensors for futuristic smart and intelligent healthcare systems. CRC Press, Boca Raton, pp 293–317

    Chapter  Google Scholar 

  13. Ji S, Xiong M, Chen H, Liu Y, Zhou L, Hong Y, Wang M, Wang C, Fu X, Sun X (2023) Cellular rejuvenation: molecular mechanisms and potential therapeutic interventions for diseases. Signal Transduct Target Ther 8(1):116

    Article  PubMed  PubMed Central  Google Scholar 

  14. Saini G, Segaran N, Mayer JL, Saini A, Albadawi H, Oklu R (2021) Applications of 3D bioprinting in tissue engineering and regenerative medicine. Clin Lab Med 10(21):4966

    Google Scholar 

  15. Shafiee A, Ghadiri E, Kassis J, Pourhabibi Zarandi N, Atala A (2018) Biosensing technologies for medical applications, manufacturing, and regenerative medicine. Curr Stem Cell Rep 4:105–115

    Article  Google Scholar 

  16. Chadha U, Bhardwaj P, Agarwal R, Rawat P, Agarwal R, Gupta I, Panjwani M, Singh S, Ahuja C, Selvaraj SKJ (2022) Recent progress and growth in biosensors technology: a critical review. J Ind Eng Chem 109:21–51

    Article  CAS  Google Scholar 

  17. Yu C, Lv Y, Li X, Bao H, Cao X, Huang J, Zhang Z (2023) SOD-functionalized gold nanoparticles as ROS scavenger and CT contrast agent for protection and imaging tracking of mesenchymal stem cells in idiopathic pulmonary fibrosis treatment. Chem Eng J 459:141603

    Article  CAS  Google Scholar 

  18. Dubey AK, Kumar Gupta V, Kujawska M, Orive G, Kim N-Y, Li C-z, Kumar Mishra Y, Kaushik A (2022) Exploring nano-enabled CRISPR-Cas-powered strategies for efficient diagnostics and treatment of infectious diseases. J Nanostruct Chem 12(5):833–864

    Article  CAS  Google Scholar 

  19. Damavandi AR, Mirmosayyeb O, Ebrahimi N, Zalpoor H, Khalilian P, Yahiazadeh S, Eskandari N, Rahdar A, Kumar PS, Pandey S (2022) Advances in nanotechnology versus stem cell therapy for the theranostics of multiple sclerosis disease. Appl Nanosci 13:4043

    Article  Google Scholar 

  20. Khosravi Ardakani H, Gerami M, Chashmpoosh M, Omidifar N, Gholami A (2022) Recent progress in nanobiosensors for precise detection of blood glucose level. Biochem Res Int 2022:2964705

    Article  PubMed  PubMed Central  Google Scholar 

  21. Adam T, Gopinath SC (2022) Nanosensors: recent perspectives on attainments and future promise of downstream applications. Process Biochem 117:153–173

    Article  CAS  Google Scholar 

  22. Altyar AE, El-Sayed A, Abdeen A, Piscopo M, Mousa SA, Najda A, Abdel-Daim MM (2023) Future regenerative medicine developments and their therapeutic applications. Biomed Pharmacother 158:114131

    Article  CAS  PubMed  Google Scholar 

  23. Tam PKH, Wong KKY, Atala A, Giobbe GG, Booth C, Gruber PJ, Monone M, Rafii S, Rando TA, Vacanti J (2022) Regenerative medicine: postnatal approaches. Lancet Child Adolesc Health 6(9):654–666

    Article  CAS  PubMed  Google Scholar 

  24. Mao J, Saiding Q, Qian S, Liu Z, Zhao B, Zhao Q, Lu B, Mao X, Zhang L, Zhang Y (2022) Reprogramming stem cells in regenerative medicine. Smart Med 1(1):e20220005

    Article  Google Scholar 

  25. Teo EYL, Ali GAM, Algarni H, Cheewasedtham W, Rujiralai T, Chong KF (2019) One-step production of pyrene-1-boronic acid functionalized graphene for dopamine detection. Mater Chem Phys 231:286–291

    Article  CAS  Google Scholar 

  26. Pourtaheri E, Taher MA, Ali GAM, Agarwal S, Gupta VK (2019) Electrochemical detection of gliclazide and glibenclamide on ZnIn2S4 nanoparticles-modified carbon ionic liquid electrode. J Mol Liq 289:111141

    Article  CAS  Google Scholar 

  27. Haes AJ, Hall WP, Chang L, Klein WL, Van Duyne RP (2004) A localized surface plasmon resonance biosensor: first steps toward an assay for Alzheimer’s disease. Nano Lett 4(6):1029–1034

    Article  CAS  Google Scholar 

  28. Yonzon CR, Stuart DA, Zhang X, McFarland AD, Haynes CL, Van Duyne RP (2005) Towards advanced chemical and biological nanosensors – an overview. Talanta 67(3):438–448

    Article  CAS  PubMed  Google Scholar 

  29. Iarossi M, Hubarevich A, Iachetta G, Dipalo M, Huang J-A, Darvill D, De Angelis F (2022) Probing ND7/23 neuronal cells before and after differentiation with SERS using Sharp-tipped Au nanopyramid arrays. Sensors Actuators B Chem 361:131724

    Article  CAS  Google Scholar 

  30. Padma S, Chakraborty P, Mukherjee S (2022) Nano-biosensors for diagnosing infectious and lifestyle-related disease of human: an update. In: Next-generation nanobiosensor devices for point-of-care diagnostics. Springer, Singapore, pp 79–103

    Google Scholar 

  31. Xu L, Shoaie N, Jahanpeyma F, Zhao J, Azimzadeh M, Al-Jamal KT (2020) Optical, electrochemical and electrical (nano)biosensors for detection of exosomes: a comprehensive overview. Biosens Bioelectron 161:112222

    Article  CAS  PubMed  Google Scholar 

  32. Verma M (2021) Nanotechnology and its application on drug delivery. Ann Roman Soc Cell Biol 25:3683–3690

    Google Scholar 

  33. Kargozar S, Hoseini SJ, Milan PB, Hooshmand S, Kim HW, Mozafari M (2020) Quantum dots: a review from concept to clinic. Biotechnol J 15(12):2000117

    Article  CAS  Google Scholar 

  34. Dai B, Zhou R, Ping J, Ying Y, Xie L (2022) Recent advances in carbon nanotube-based biosensors for biomolecular detection. Trends Anal Chem 154:116658

    Article  CAS  Google Scholar 

  35. Shahriari S, Sastry M, Panjikar S, Singh Raman R (2021) Graphene and graphene oxide as a support for biomolecules in the development of biosensors. Nanotechnol Sci Appl 14:197–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Patil T, Gambhir R, Vibhute A, Tiwari AP (2022) Gold nanoparticles: synthesis methods, functionalization and biological applications. J Clust Sci 4:1–21

    Google Scholar 

  37. Anik MI, Hossain MK, Hossain I, Mahfuz A, Rahman MT, Ahmed I (2021) Recent progress of magnetic nanoparticles in biomedical applications: a review. Nano Select 2(6):1146–1186

    Article  CAS  Google Scholar 

  38. Afflerbach A-K, Kiri MD, Detinis T, Maoz BM (2020) Mesenchymal stem cells as a promising cell source for integration in novel in vitro models. Biomol Ther 10(9):1306

    CAS  Google Scholar 

  39. Stensberg MC, Wei Q, McLamore ES, Porterfield DM, Wei A, Sepúlveda MS (2011) Toxicological studies on silver nanoparticles: challenges and opportunities in assessment, monitoring and imaging. Nanomedicine (Lond) 6(5):879–898

    Article  CAS  PubMed  Google Scholar 

  40. Gao Q, Tan L, Wen Z, Fan D, Hui J, Wang P-p (2023) Chiral inorganic nanomaterials: harnessing chirality-dependent interactions with living entities for biomedical applications. Nano Res 16:11107–11124

    Article  Google Scholar 

  41. Huang Z, Shao G, Li L (2022) Micro/nano functional devices fabricated by additive manufacturing. Progr Mater Sci 131:101020

    Article  Google Scholar 

  42. Resnik DB, Tinkle SS (2007) Ethics in nanomedicine. Nanomedicine (Lond) 2(3):345–350

    Article  PubMed  Google Scholar 

  43. Yang L, Lee J-H, Rathnam C, Hou Y, Choi J-W, Lee K-B (2019) Dual-enhanced Raman scattering-based characterization of stem cell differentiation using graphene-plasmonic hybrid nanoarray. Nano Lett 19(11):8138–8148

    Article  CAS  PubMed  Google Scholar 

  44. Yang Q, Zhang X, Song Y, Li K, Shi H, Xiao H, Ma Y (2020) Label-free in situ pH monitoring in a single living cell using an optical nanoprobe. Med Devices Sens 3(3):e10079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Liu J, Li F, Wang Y, Pan L, Lin P, Zhang B, Zheng Y, Xu Y, Liao H, Ko G, Fei F, Xu C, Du Y, Shin K, Kim D, Jang S-S, Chung HJ, Tian H, Wang Q, Guo W, Nam J-M, Chen Z, Hyeon T, Ling D (2020) A sensitive and specific nanosensor for monitoring extracellular potassium levels in the brain. Nat Nanotechnol 15(4):321–330

    Article  CAS  PubMed  Google Scholar 

  46. Zhao Y, Song S, Wang D, Liu H, Zhang J, Li Z, Wang J, Ren X, Zhao Y (2022) Nanozyme-reinforced hydrogel as a H2O2-driven oxygenerator for enhancing prosthetic interface osseointegration in rheumatoid arthritis therapy. Nat Commun 13(1):6758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Karthikesh MS, Yang X (2020) Photoacoustic image-guided interventions. Exp Biol Med 245(4):330–341

    Article  CAS  Google Scholar 

  48. Dhada KS, Hernandez DS, Suggs LJ (2019) In vivo photoacoustic tracking of mesenchymal stem cell viability. ACS Nano 13(7):7791–7799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yeo D, Wiraja C, Chuah YJ, Gao Y, Xu C (2015) A nanoparticle-based sensor platform for cell tracking and status/function assessment. Sci Rep 5(1):1–14

    Article  Google Scholar 

  50. Solaimuthu A, Vijayan AN, Murali P, Korrapati PS (2020) Nano-biosensors and their relevance in tissue engineering. Curr Opin Biomed Eng 13:84–93

    Article  Google Scholar 

  51. Skvortsova A, Trelin A, Sedlar A, Erzina M, Travnickova M, Svobodova L, Kolska Z, Siegel J, Bacakova L, Svorcik V (2023) SERS-CNN approach for non-invasive and non-destructive monitoring of stem cell growth on a universal substrate through an analysis of the cultivation medium. Sensors Actuators B Chem 375:132812

    Article  CAS  Google Scholar 

  52. Shoaib A, Darraj A, Khan ME, Azmi L, Alalwan A, Alamri O, Tabish M, Khan AU (2023) A nanotechnology-based approach to biosensor application in current diabetes management practices. Nanomaterials 13(5):867. https://doi.org/10.3390/nano13050867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Khan ME, Mohammad A, Ali W, Khan AU, Hazmi W, Zakri W, Yoon T (2022) Excellent visible-light photocatalytic activity towards the degradation of tetracycline antibiotic and electrochemical sensing of hydrazine by SnO2–CdS nanostructures. J Clean Prod 349:131249

    Article  CAS  Google Scholar 

  54. Chang L, Hu J, Chen F, Chen Z, Shi J, Yang Z, Li Y, Lee LJ (2016) Nanoscale bio-platforms for living cell interrogation: current status and future perspectives. Nanoscale 8(6):3181–3206

    Article  CAS  PubMed  Google Scholar 

  55. Zhang W, Zhang L, Gao H, Yang W, Wang S, Xing L, Xue X (2018) Self-powered implantable skin-like glucometer for real-time detection of blood glucose level in vivo. Nano Micro Lett 10:1–11

    Article  Google Scholar 

  56. Kim J, Campbell AS, de Ávila BE-F, Wang J (2019) Wearable biosensors for healthcare monitoring. Nat Biotechnol 37(4):389–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Pu Z, Zhang X, Yu H, Tu J, Chen H, Liu Y, Su X, Wang R, Zhang L, Li D (2021) A thermal activated and differential self-calibrated flexible epidermal biomicrofluidic device for wearable accurate blood glucose monitoring. Sci Adv 7(5):eabd0199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sempionatto JR, Nakagawa T, Pavinatto A, Mensah ST, Imani S, Mercier P, Wang J (2017) Eyeglasses based wireless electrolyte and metabolite sensor platform. Lab Chip 17(10):1834–1842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Xu K, Lu Y, Takei K (2019) Multifunctional skin-inspired flexible sensor systems for wearable electronics. Adv Mater Technol 4(3):1800628

    Article  Google Scholar 

  60. Yang B, Fang X, Kong J (2019) In situ sampling and monitoring cell-free DNA of the Epstein–Barr virus from dermal interstitial fluid using wearable microneedle patches. ACS Appl Mater Interfaces 11(42):38448–38458

    Article  CAS  PubMed  Google Scholar 

  61. Sargazi S, Fatima I, Kiani MH, Mohammadzadeh V, Arshad R, Bilal M, Rahdar A, Díez-Pascual AM, Behzadmehr R (2022) Fluorescent-based nanosensors for selective detection of a wide range of biological macromolecules: a comprehensive review. Int J Biol Macromol 206:115–147

    Article  CAS  PubMed  Google Scholar 

  62. Kim J, Sempionatto JR, Imani S, Hartel MC, Barfidokht A, Tang G, Campbell AS, Mercier PP, Wang JJAS (2018) Simultaneous monitoring of sweat and interstitial fluid using a single wearable biosensor platform. Adv Sci 5(10):1800880

    Article  Google Scholar 

  63. Malini S, Roy A, Raj K, Raju KA, Ali IH, Mahesh B, Yadav KK, Islam S, Jeon B-H, Lee SS (2022) Sensing beyond senses: an overview of outstanding strides in architecting nanopolymer-enabled sensors for biomedical applications. Polymers 14(3):601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Azar AT, Madian A, Ibrahim H, Taha MA, Mohamed NA, Fathy Z, AboAlNaga BM (2020) Medical nanorobots: design, applications and future challenges. In: Control systems design of bio-robotics and bio-mechatronics with advanced applications. Elsevier, London, pp 329–394

    Chapter  Google Scholar 

  65. Yar A, Okbaz A, Parlayıcı Ş (2023) A biocompatible, eco-friendly, and high-performance triboelectric nanogenerator based on sepiolite, bentonite, and kaolin decorated chitosan composite film. Nano Energy 110:108354

    Article  CAS  Google Scholar 

  66. Hasan A, Paul A, Vrana NE, Zhao X, Memic A, Hwang Y-S, Dokmeci MR, Khademhosseini A (2014) Microfluidic techniques for development of 3D vascularized tissue. Biomaterials 35(26):7308–7325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Singh R, Sharma A, Saji J, Umapathi A, Kumar S, Daima HK (2022) Smart nanomaterials for cancer diagnosis and treatment. Nano Converg 9(1):21

    Article  PubMed  PubMed Central  Google Scholar 

  68. Cheng N, Du D, Wang X, Liu D, Xu W, Luo Y, Lin Y (2019) Recent advances in biosensors for detecting cancer-derived exosomes. Trends Biotechnol 37(11):1236–1254

    Article  CAS  PubMed  Google Scholar 

  69. Wang J, Huang X, Xie J, Han Y, Huang Y, Zhang H (2021) Exosomal analysis: advances in biosensor technology. Clin Chim Acta 518:142–150

    Article  CAS  PubMed  Google Scholar 

  70. He F, Wang J, Yin B-C, Ye B-C (2018) Quantification of exosome based on a copper-mediated signal amplification strategy. Anal Chem 90(13):8072–8079

    Article  CAS  PubMed  Google Scholar 

  71. Niţu A, Tudose D, Dragomir D (2016) Dental implant with contact nano-sensors for the treatment of xerostomia. In: 2016 15th RoEduNet conference: networking in education and research. IEEE, Piscataway

    Google Scholar 

  72. Chen W, Wang Z, Wang L, Chen X (2022) Smart chemical engineering-based lightweight and miniaturized attachable systems for advanced drug delivery and diagnostics. Adv Mater 34(6):2106701

    Article  CAS  Google Scholar 

  73. AlKahtani RN (2018) The implications and applications of nanotechnology in dentistry: a review. Saudi Dent J 30(2):107–116

    Article  PubMed  PubMed Central  Google Scholar 

  74. Clark LC, Lyons C (1962) Electrode systems for continuous monitoring in cardiovascular surgery. Ann N Y Acad Sci 102(1):29–45

    Article  CAS  PubMed  Google Scholar 

  75. Foster LE (2006) Nanotechnology: science, innovation and opportunity. Prentice Hall, Upper Saddle River

    Google Scholar 

  76. Hasanzadeh M, Shadjou N (2016) Electrochemical nanobiosensing in whole blood: recent advances. Trends Anal Chem 80:167–176

    Article  CAS  Google Scholar 

  77. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68(6):394–424

    Article  PubMed  Google Scholar 

  78. Althuis MD, Dozier JM, Anderson WF, Devesa SS, Brinton LA (2005) Global trends in breast cancer incidence and mortality 1973–1997. Int J Epidemiol 34(2):405–412

    Article  PubMed  Google Scholar 

  79. Gaudet MM, Gierach GL, Carter BD, Luo J, Milne RL, Weiderpass E, Giles GG, Tamimi RM, Eliassen AH, Rosner B, Wolk A, Adami HO, Margolis KL, Gapstur SM, Garcia-Closas M, Brinton LA (2018) Pooled analysis of nine cohorts reveals breast cancer risk factors by tumor molecular subtype. Cancer Res 78(20):6011–6021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Hammond ME, Hayes DF, Wolff AC, Mangu PB, Temin S (2010) American society of clinical oncology/college of American pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. J Oncol Pract 6(4):195–197

    Article  PubMed  PubMed Central  Google Scholar 

  81. Deyarmin B, Kane JL, Valente AL, van Laar R, Gallagher C, Shriver CD, Ellsworth RE (2013) Effect of ASCO/CAP guidelines for determining ER status on molecular subtype. Ann Surg Oncol 20(1):87–93

    Article  PubMed  Google Scholar 

  82. Cappelletti V, Iorio E, Miodini P, Silvestri M, Dugo M, Daidone MG (2017) Metabolic footprints and molecular subtypes in breast cancer. Dis Markers 2017:7687851

    Article  PubMed  PubMed Central  Google Scholar 

  83. Fan Y, Zhou X, Xia TS, Chen Z, Li J, Liu Q, Alolga RN, Chen Y, Lai MD, Li P, Zhu W, Qi LW (2016) Human plasma metabolomics for identifying differential metabolites and predicting molecular subtypes of breast cancer. Oncotarget 7(9):9925–9938

    Article  PubMed  PubMed Central  Google Scholar 

  84. van der Schee MP, Paff T, Brinkman P, van Aalderen WMC, Haarman EG, Sterk PJ (2015) Breathomics in lung disease. Chest 147(1):224–231

    Article  PubMed  Google Scholar 

  85. Buszewski B, Kesy M, Ligor T, Amann A (2007) Human exhaled air analytics: biomarkers of diseases. Biomed Chromatogr 21(6):553–566

    Article  CAS  PubMed  Google Scholar 

  86. Queralto N, Berliner AN, Goldsmith B, Martino R, Rhodes P, Lim SH (2014) Detecting cancer by breath volatile organic compound analysis: a review of array-based sensors. J Breath Res 8(2):027112

    Article  CAS  PubMed  Google Scholar 

  87. Shirasu M, Touhara K (2011) The scent of disease: volatile organic compounds of the human body related to disease and disorder. J Biochem 150(3):257–266

    Article  CAS  PubMed  Google Scholar 

  88. Yang HY, Wang YC, Peng HY, Huang CH (2021) Breath biopsy of breast cancer using sensor array signals and machine learning analysis. Sci Rep 11(1):103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kemp JA, Kwon YJ (2021) Cancer nanotechnology: current status and perspectives. Nano Converg 8(1):34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kalsoom T, Ramzan N, Ahmed S, Ur-Rehman M (2020) Advances in sensor technologies in the era of smart factory and industry 4.0. Sensors 20(23):6783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Xin X, Judy JD, Sumerlin BB, He Z (2020) Nano-enabled agriculture: from nanoparticles to smart nanodelivery systems. J Environ Chem 17(6):413–425

    Article  CAS  Google Scholar 

  92. Rowe RG, Daley GQ (2019) Induced pluripotent stem cells in disease modelling and drug discovery. Nat Rev Genet 20(7):377–388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Atwa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Atwa, A. et al. (2024). Integrating Nanosensors into Stem Cells Technologies and Regenerative Medicine. In: Ali, G.A.M., Chong, K.F., Makhlouf, A.S.H. (eds) Handbook of Nanosensors. Springer, Cham. https://doi.org/10.1007/978-3-031-16338-8_38-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16338-8_38-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16338-8

  • Online ISBN: 978-3-031-16338-8

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Integrating Nanosensors into Stem Cells Technologies and Regenerative Medicine
    Published:
    29 February 2024

    DOI: https://doi.org/10.1007/978-3-031-16338-8_38-2

  2. Original

    Integrating Nanosensors into Stem Cells Technologies and Regenerative Medicine
    Published:
    17 October 2023

    DOI: https://doi.org/10.1007/978-3-031-16338-8_38-1