Skip to main content

Formation of Subsets of Co-expressed Gene Expression Profiles Based on Joint Use of Fuzzy Inference System, Statistical Criteria and Shannon Entropy

  • Conference paper
  • First Online:
Lecture Notes in Data Engineering, Computational Intelligence, and Decision Making (ISDMCI 2022)

Abstract

The paper presents the results of the research regarding the application of a fuzzy logic inference system to form the co-expressed gene expression profiles based on the joint use of Shannon entropy and statistical criteria . The allocation of co-expressed genes can allow us to increase the disease diagnosis accuracy on the one hand and, reconstruct the qualitative gene regulatory networks on the other hand. To solve this problem, we have proposed the joint use of the fuzzy logic inference system and random forest classifier. In beginning, we have calculated for each of the gene expression profiles the maximum expression values, variance and Shannon entropy. These parameters were used as the input ones for the fuzzy logic inference system. After setting the fuzzy membership functions for both the input and output parameters, the model formalization including fuzzy rules formation, we have applied the model to gene expression data which included initially the 54675 genes for 156 patients examined at the early stage of lung cancer. As a result of this step implementation, we have obtained the four subsets of gene expression profiles with various significance levels. To confirm the obtained results, we have applied the classification procedure to investigated samples that included as the attributes the allocated genes. The analysis of the classification quality criteria allows us to conclude about the high effectiveness of the proposed technique to solve this type of task.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bioconductor. https://www.bioconductor.org/

  2. Gene expression omnibus. https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi

  3. Abinash, M., Vasudevan, V.: Gene data classification using map reduce based linear SVM. Concurrency Comput. Pract. Experience 34(8), e5497 (2022). https://doi.org/10.1002/cpe.5497

    Article  Google Scholar 

  4. Babichev, S., Škvor, J.: Technique of gene expression profiles extraction based on the complex use of clustering and classification methods. Diagnostics 10(8), 584 (2020). https://doi.org/10.3390/diagnostics10080584

    Article  Google Scholar 

  5. Babichev, S., Lytvynenko, V., Škvor, J., et al.: Information technology of gene expression profiles processing for purpose of gene regulatory networks reconstruction. In: Proceedings of the 2018 IEEE 2nd International Conference on Data Stream Mining and Processing, DSMP 2018, pp. 36-341 (2018). https://doi.org/10.1109/DSMP.2018.8478452

  6. Busaleh, M., Hussain, M., Aboalsamh, H.: Breast mass classification using diverse contextual information and convolutional neural network. Biosensors 11(11), 419 (2021). https://doi.org/10.3390/bios11110419

    Article  Google Scholar 

  7. Chuang, Y.H., Huang, S.H., Hung, T.M., et al.: Convolutional neural network for human cancer types prediction by integrating protein interaction networks and omics data. Sci. Rep. 11(1), 20691 (2021). https://doi.org/10.1038/s41598-021-98814-y

    Article  Google Scholar 

  8. Hasan, N., Mishra, A., Arunkumar, R.: Fuzzy logic based cross-layer design to improve quality of service in mobile ad-hoc networks for next-gen cyber physical system. Eng. Sci. Technol. 35, 101099 (2022). https://doi.org/10.1016/j.jestch.2022.101099

    Article  Google Scholar 

  9. Hou, J., Aerts, J., den Hamer, B., et al.: Gene expression-based classification of non-small cell lung carcinomas and survival prediction. PLoS ONE 5, e10312 (2010). https://doi.org/10.1371/journal.pone.0010312

    Article  Google Scholar 

  10. Hu, Y., Zhao, L., Li, Z., et al.: Classifying the multi-omics data of gastric cancer using a deep feature selection method. Expert Syst. Appl. 200, 116813 (2022). https://doi.org/10.1016/j.eswa.2022.116813

    Article  Google Scholar 

  11. Li, J., Sun, W., Feng, X., et al.: A dense connection encoding-decoding convolutional neural network structure for semantic segmentation of thymoma. Neurocomputing 451, 1–11 (2021). https://doi.org/10.1016/j.neucom.2021.04.023

    Article  Google Scholar 

  12. Lytvynenko, V., Savina, N., Krejci, J., Voronenko, M., Yakobchuk, M., Kryvoruchko, O.: Bayesian networks’ development based on noisy-max nodes for modeling investment processes in transport. In: CEUR Workshop Proceedings, vol. 2386 (2019)

    Google Scholar 

  13. Marasanov, V.V., Sharko, A.V., Sharko, A.A.: Energy spectrum of acoustic emission signals in coupled continuous media. J. Nano-and Elect. Phys. 11(3), 03028 (2019). https://doi.org/10.21272/jnep.11(3).03028

  14. Morandat, F., Hill, B., Osvald, L., Vitek, J.: Evaluating the design of the R language. Lect. Notes Comput. Sci. 7313, 104–131 (2012). https://doi.org/10.1007/978-3-642-31057-7_6

    Article  Google Scholar 

  15. Qi, Y., Su, B., Lin, X., Zhou, H.: A new feature selection method based on feature distinguishing ability and network influence. J. Biomed. Inf. 128, 104048 (2022). https://doi.org/10.1016/j.jbi.2022.104048

    Article  Google Scholar 

  16. Sharko, M.V., Sharko, O.V.: Innovation aspects of enterprises development management in regional tourism. Actual Prob. Econ. 181(7), 206–213 (2016)

    Google Scholar 

  17. Taherkhani, N., Sepehri, M., Khasha, R., Shafaghi, S.: Ranking patients on the kidney transplant waiting list based on fuzzy inference system. BMC Nephrol. 23(1), 31 (2022). https://doi.org/10.1186/s12882-022-02662-5

    Article  Google Scholar 

  18. Yuan, X., Liebelt, M., Shi, P., Phillips, B.: Cognitive decisions based on a rule-based fuzzy system. Inf. Sci. 600, 323–341 (2022). https://doi.org/10.1016/j.ins.2022.03.089

    Article  Google Scholar 

  19. Zadeh, L.: Fuzzy logic. Computational Complexity: Theory, Techniques, and Applications, pp. 1177–1200 (2013). https://doi.org/10.1007/978-1-4614-1800-9_73

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergii Babichev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liakh, I., Babichev, S., Durnyak, B., Gado, I. (2023). Formation of Subsets of Co-expressed Gene Expression Profiles Based on Joint Use of Fuzzy Inference System, Statistical Criteria and Shannon Entropy. In: Babichev, S., Lytvynenko, V. (eds) Lecture Notes in Data Engineering, Computational Intelligence, and Decision Making. ISDMCI 2022. Lecture Notes on Data Engineering and Communications Technologies, vol 149. Springer, Cham. https://doi.org/10.1007/978-3-031-16203-9_2

Download citation

Publish with us

Policies and ethics