Skip to main content

Bridging Functional Model of Arterial Oxygen with Information of Venous Blood Gas: Validating Bioprocess Soft Sensor on Human Respiration

  • Conference paper
  • First Online:
Intelligent and Safe Computer Systems in Control and Diagnostics (DPS 2022)

Abstract

Oxygen and carbon dioxide gas exchange are one of the principal indicators of a microorganism state. In bioprocesses, cultivated cell oxygen consumption and carbon dioxide production are descriptors of process quality. This paper presents how a soft-sensor for gas analysis from biotechnology also applies to macroorganisms. The study combines information from venous blood gas analysis and expiratory gasses to estimate partial pressures of oxygen and carbon dioxide in the venous blood of children in the pediatric intensive care unit. Observed data were from three patients with monitoring intervals ranging from 6 to 13 days. Presented models had the lowest mean average error of 3.17 mmHg for carbon dioxide \({PvCO}_{2}\) and 1.64 mmHg for oxygen \({PvO}_{2}\). Additionally, the carbon dioxide model proposes a critical flow of inspiratory gas at which no carbon dioxide should accumulate in the respiratory system. The paper lays a basis for further research on the noninvasive monitoring of breath data and its applicability in the medical field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Legal Issues

The medical study is carried out under the permit BE-2-92 granted by the Kaunas Regional Biomedical Research Ethics Committee.

References

  1. Lithuanian National Register of Biomedical and Drug Clinical Trials. http://bioetika.sam.lt/index.php?1102490711

  2. Kharitonov, S.A., Barnes, P.J.: Exhaled markers of pulmonary disease. Am. J. Respir. Crit. Care Med. 163, 1693–1722 (2001). https://doi.org/10.1164/ajrccm.163.7.2009041

    Article  Google Scholar 

  3. Folke, M., Cernerud, L., Ekström, M., Hök, B.: Critical review of noninvasive respiratory monitoring in medical care. Med. Biol. Eng. Comput. 41, 377–383 (2003). https://doi.org/10.1007/BF02348078

    Article  Google Scholar 

  4. Zegdi, R., et al.: Exhaled carbon monoxide in mechanically ventilated critically ill patients: influence of inspired oxygen fraction. Intensive Care Med. 26(9), 1228–1231 (2000). https://doi.org/10.1007/s001340000590

    Article  Google Scholar 

  5. Smallwood, C.D., Kheir, J.N., Walsh, B.K., Mehta, N.M.: Accuracy of oxygen consumption and carbon dioxide elimination measurements in 2 Breath-by-Breath devices. Respir Care 62, 475–480 (2017). https://doi.org/10.4187/respcare.05115

    Article  Google Scholar 

  6. Chen, H.-Y., Chen, C.: Development of a breath analyzer for O2 and CO2 measurement. TOBEJ 13, 21–32 (2019). https://doi.org/10.2174/1874120701913010021

    Article  MathSciNet  Google Scholar 

  7. Lawal, O., Ahmed, W.M., Nijsen, T.M.E., Goodacre, R., Fowler, S.J.: Exhaled breath analysis: a review of ‘breath-taking’ methods for off-line analysis. Metabolomics 13(10), 1–16 (2017). https://doi.org/10.1007/s11306-017-1241-8

    Article  Google Scholar 

  8. Castro, D., Patil, S.M., Keenaghan, M.: Arterial blood gas. In: StatPearls. StatPearls Publishing, Treasure Island (FL) (2022)

    Google Scholar 

  9. Pulvirenti, G., et al.: Lower airway microbiota. Front. Pediatr. 7, 393 (2019). https://doi.org/10.3389/fped.2019.00393

  10. Rieser, T.M.: Arterial and venous blood gas analyses. Top. Companion Anim. Med. 28, 86–90 (2013). https://doi.org/10.1053/j.tcam.2013.04.002

    Article  Google Scholar 

  11. Thangaraj, R.K., Chidambaram, H.H.S., Dominic, M., Chandrasekaran, V.P., Padmanabhan, K.N., Chanjal, K.S.: A comparison of arterial and venous blood gas analysis and its interpretation in emergency department: a cross-sectional study. Eurasian J. Emerg. Med. 20, 178–182 (2021). https://doi.org/10.4274/eajem.galenos.2021.85520

    Article  Google Scholar 

  12. Razi, E., Nasiri, O., Akbari, H., Razi, A.: Correlation of arterial blood gas measurements with venous blood gas values in mechanically ventilated patients. Tanaffos 11, 30–35 (2012)

    Google Scholar 

  13. Schütz, N., Roth, D., Schwameis, M., Röggla, M., Domanovits, H.: Can venous blood gas be used as an alternative to arterial blood gas in intubated patients at admission to the emergency department? A retrospective study. OAEM 11, 305–312 (2019). https://doi.org/10.2147/OAEM.S228420

    Article  Google Scholar 

  14. Shirani, F., Salehi, R., Naini, A.E., Azizkhani, R., Gholamrezaei, A.: The effects of hypotension on differences between the results of simultaneous venous and arterial blood gas analysis. J. Res. Med. Sci. 16, 188–194 (2011)

    Google Scholar 

  15. Epstein, M.F., Cohen, A.R., Feldman, H.A., Raemer, D.B.: Estimation of Paco2 by two noninvasive methods in the critically ill newborn infant. J. Pediatr. 106, 282–286 (1985). https://doi.org/10.1016/S0022-3476(85)80306-1

    Article  Google Scholar 

  16. Prisk, G.K., West, J.B.: Deriving the arterial PO2 and oxygen deficit from expired gas and pulse oximetry. J. Appl. Physiol. 127, 1067–1074 (2019). https://doi.org/10.1152/japplphysiol.01100.2018

    Article  Google Scholar 

  17. Bissonnette, B., Lerman, J.: Single breath end-tidal CO2 estimates of arterial PCO2 in infants and children. Can. J. Anaesth 36, 110–112 (1989). https://doi.org/10.1007/BF03011429

    Article  Google Scholar 

  18. Survyla, A., et al.: Noninvasive continuous tracking of partial pressure of oxygen in arterial blood: adapting microorganisms bioprocess soft sensor technology for holistic analysis of human respiratory system. In: 2021 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), pp. 1–5. IEEE, Karlsruhe, Germany (2021)

    Google Scholar 

  19. Messina, Z., Patrick, H.: Partial pressure of carbon dioxide. In: StatPearls. StatPearls Publishing, Treasure Island (FL) (2022)

    Google Scholar 

  20. Forster, R.E.: Can alveolar pCO2 exceed pulmonary end-capillary CO2? No. J. Appl. Physiol. 42, 326–328 (1977). https://doi.org/10.1152/jappl.1977.42.3.326

    Article  Google Scholar 

  21. Sharma, S., Hashmi, M.F., Burns, B.: Alveolar gas equation. In: StatPearls. StatPearls Publishing, Treasure Island (FL) (2022)

    Google Scholar 

  22. Urniezius, R., Survyla, A., Paulauskas, D., Bumelis, V.A., Galvanauskas, V.: Generic estimator of biomass concentration for Escherichia coli and Saccharomyces cerevisiae fed-batch cultures based on cumulative oxygen consumption rate. Microb. Cell Fact. 18, 190 (2019). https://doi.org/10.1186/s12934-019-1241-7

    Article  Google Scholar 

  23. Donatas, L., Rimvydas, S., Vytautas, G., Renaldas, U.: Simple control systems for set-point control of dissolved oxygen concentration in batch fermentation processes. Chem. Eng. Trans. 74, 127–132 (2019). https://doi.org/10.3303/CET1974022

    Article  Google Scholar 

  24. Survyla, A., Levisauskas, D., Urniezius, R., Simutis, R.: An oxygen-uptake-rate-based estimator of the specific growth rate in Escherichia coli BL21 strains cultivation processes. Comput. Struct. Biotechnol. J. 19, 5856–5863 (2021). https://doi.org/10.1016/j.csbj.2021.10.015

    Article  Google Scholar 

Download references

Funding

This project received funding from the European Regional Development Fund (project no. 01.2.2-LMT-K-718-03-0039) under a grant agreement with the Research Council of Lithuania (LMTLT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benas Kemesis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kemesis, B., Urniezius, R., Kondratas, T., Jankauskaite, L., Masaitis, D., Babilius, P. (2023). Bridging Functional Model of Arterial Oxygen with Information of Venous Blood Gas: Validating Bioprocess Soft Sensor on Human Respiration. In: Kowalczuk, Z. (eds) Intelligent and Safe Computer Systems in Control and Diagnostics. DPS 2022. Lecture Notes in Networks and Systems, vol 545. Springer, Cham. https://doi.org/10.1007/978-3-031-16159-9_4

Download citation

Publish with us

Policies and ethics