Skip to main content

How to Improve the Teaching of Computational Machine Learning Applied to Large-Scale Data Science: The Case of Public Universities in Mexico

  • Conference paper
  • First Online:
Intelligent Systems and Applications (IntelliSys 2022)

Abstract

Teaching along with training on Machine Learning (ML) and Big Data in Mexican universities has become a necessity that requires the application of courses, handbooks, and practices that allow improvement in the learning of Data Science (DS) and Artificial Intelligence (AI) subjects. This work shows how the academy and the Information Technology industry use tools to analyze large volumes of data to support decision-making, which is hard to treat and interpret directly. A solution to some large-scale national problems is the inclusion of these subjects in related courses within specialization areas that universities offer. The methodology in this work is as follows: 1) Selection of topics and tools for ML and Big Data teaching, 2) Design of practices with application to real data problems, and 3) Implementation and/or application of these practices in a specialization diploma. Results of a survey applied to academic staff and students are shown. The survey respondents have already taken related courses along with those specific topics that the proposed courses and practices will seek to strengthen, developing needed skills for solving problems where ML/DL and Big Data are an outstanding alternative of solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Haenlein, M., Kaplan, A.: A brief history of artificial intelligence: on the past, present, and future of artificial intelligence. Calif. Manage. Rev. 61(4), 5–14 (2019)

    Article  Google Scholar 

  2. ENES-UNAM Homepage: http://www.enesmorelia.unam.mx/. Last accessed 18 Jan 2021

  3. Nilsson, N.J.: Introduction to Machine Learning. Not published, Stanford, CA (1996)

    Google Scholar 

  4. Rumelhart, D., Hinton, G., Williams, R.: Learning representations by back-propagating errors. Nature 323, 533–536 (1986)

    Article  Google Scholar 

  5. Deng, L., Yu, D.: Deep learning: methods and applications. FNT Sign. Process. 7, 197–387 (2014)

    Article  MathSciNet  Google Scholar 

  6. PyTorch Homepage: https://pytorch.org/. Last accessed 28 Jan 2021

  7. Fast.ai Homepage: https://www.fast.ai/. Last accessed 28 Jan 2021

  8. TensorFlow Homepage: https://www.tensorflow.org/. Last accessed 28 Jan 2021

  9. Keras Homepage: https://keras.io/. Last accessed 28 Jan 2021

  10. Deeplearning4j Homepage: https://deeplearning4j.konduit.ai. Last accessed 28 Jan 2021

  11. El Naqa, I., Murphy, M.J.: What is machine learning? In: El Naqa, I., Li, R., Murphy, M.J. (eds.) Machine Learning in Radiation Oncology, pp. 3–11. Springer International Publishing, Cham (2015). https://doi.org/10.1007/978-3-319-18305-3_1

    Chapter  Google Scholar 

  12. Géron, A.: Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media (2019)

    Google Scholar 

  13. Hagerty, J., Stanley R., Stoecker W.: Medical image processing in the age of deep learning. In: Proceedings of the 12th international joint conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP), pp. 306–311 (2017)

    Google Scholar 

  14. Basheer, I., Hajmeer, M.: Artificial neural networks: fundamentals, computing, design, and application. J. Microbiol. Methods 43(1), 3–31 (2000)

    Article  Google Scholar 

  15. Lévy J., Flórez R., Rodríguez J.: Las redes neuronales artificiales, 1a. Edición. Tirant lo Blanch., Netbiblo (2008)

    Google Scholar 

  16. Lasi, H., Fettke, P., Feld, T., Hoffmann, M.: Industry 4.0. Bus. Inform. Syst. Eng. 6(4), 239–242 (2014)

    Article  Google Scholar 

  17. Jordan, M., Mitchell, T.: Machine Learning: Trends, Perspectives, and Prospects. Science 349(6245), 255–260 (2015)

    Article  MathSciNet  Google Scholar 

  18. Mohri, M., Rostamizadeh, A., Talwalkar, A.: Foundations of Machine Learning. MIT Press (2018)

    Google Scholar 

  19. Jagielski, M., Oprea, A., Biggio, B., Liu, C., Nita-Rotaru, C., Li, B.: Manipulating machine learning: poisoning attacks and countermeasures for regression learning. In: 2018 IEEE Symposium on Security and Privacy (SP), pp. 19–35 (2018)

    Google Scholar 

  20. Li, W., Han, J., Pei, J.: CMAR: Accurate and efficient classification based on multiple class-association rules. In: Proceedings 2001 IEEE. International Conference on Data Mining, pp. 369–376 (2001)

    Google Scholar 

  21. Raschka, S., Mirjalili, V.: Python Machine Learning: Machine Learning and Deep Learning with Python, Scikit-learn, and TensorFlow 2. Packt Publishing Ltd. (2019)

    Google Scholar 

  22. Dayan, P., Sahani, M., Deback, G.: Unsupervised Learning. The MIT Encyclopedia of The Cognitive Sciences, pp. 857–859 (1999)

    Google Scholar 

  23. Wiering, M., van Otterlo, M. (eds.): Reinforcement Learning. Springer Berlin Heidelberg, Berlin, Heidelberg (2012)

    MATH  Google Scholar 

  24. Kaelbling, L., Littman, M., Moore, A.: Reinforcement learning: a survey. J. Artif. Intell. Res. 4, 237–285 (1996)

    Article  Google Scholar 

  25. Montgomery, D., Peck, E., Vining, G.: Introduction to Linear Regression Analysis. John Wiley & Sons (2021)

    Google Scholar 

  26. Kotsiantis, S., Zaharakis, I., Pintelas, P.: Supervised machine learning: a review of classification techniques. Emerg Artifi. Intell. Appl. Comput. Eng. 160(1), 3–24 (2007)

    Google Scholar 

  27. Celebi, M.E., Aydin, K. (eds.): Unsupervised Learning Algorithms. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-24211-8

    Book  Google Scholar 

  28. McCulloch, W.S., Pitts, W.: A logical calculus of the ideas immanent in nervous activity. The Bull. Math. Biophys. 5(4), 115–133 (1943)

    Article  MathSciNet  Google Scholar 

  29. LeCun, Y., et al.: Handwritten digit recognition with a back-propagation network. In: Touretzky, D. (ed.) Advances in Neural Information Processing Systems, vol. 2. Morgan-Kaufmann (1990)

    Google Scholar 

  30. Fukushima, K.: Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol. Cybern. 36, 193–202 (1980)

    Article  Google Scholar 

  31. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  32. He, K., Zhang, X., Ren S., Sun J.: Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016)

    Google Scholar 

  33. Deng, J.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE conference on computer vision and pattern recognition. pp. 248–255 (2009)

    Google Scholar 

  34. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vision 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  35. Thontirawong, P., Chinchanachokchai, S.: Teaching artificial intelligence and machine learning in marketing. Mark. Educ. Rev. 31(2), 58–63 (2021)

    Google Scholar 

  36. Miller E., Ceballos H., Engelmann B., Schiffler A., Batres R., Schmitt J.: Industry 4.0 and International Collaborative Online Learning in a Higher Education Course on Machine Learning, Machine Learning-Driven Digital Technologies for Educational Innovation Workshop, pp. 1–8 (2021)

    Google Scholar 

  37. Huang L., Ma K.: Introducing machine learning to first-year undergraduate engineering students through an authentic and active learning labware. In: IEEE Frontiers in Education Conference (FIE), pp. 1–4 (2018)

    Google Scholar 

  38. Kaggle Homepage. https://www.kaggle.com/c/titanic/data. Last accessed 28 Jan 2021

  39. Kaggle Homepage: https://www.kaggle.com/camnugent/california-housing-prices. Last accessed 28 Jan 2021

  40. RePDA Homepage: https://app.conagua.gob.mx/consultarepda.aspx. Last accessed 28 Jan 2021

  41. Kaggle Homepage: https://www.kaggle.com/hellbuoy/online-retail-k-means-hierarchical-clustering/data. Last accessed 28 Jan 2021

  42. Dask Homepage: https://dask.org/. Last accessed 28 Jan 2021

  43. Hadoop Homepage: https://hadoop.apache.org/. Last accessed 28 Jan 2021

  44. RUOA UNAM Homepage: https://www.ruoa.unam.mx/index.php?page=estaciones. Last accessed 28 Jan 2021

  45. Kaggle Homepage: https://www.kaggle.com/adityadesai13/used-car-dataset-ford-and-mercedes. Last accessed 28 Jan 2021

  46. Webmosquito Homepage: http://basurae.iies.unam.mx/webmosquito/html/. Last accessed 28 Jan 2021

  47. Kaggle Homepage: https://www.kaggle.com/khoongweihao/covid19-xray-dataset-train-test-sets. Last accessed 28 Jan 2021

  48. Kaggle Homepage: https://www.kaggle.com/arpitjain007/game-of-deep-learning-ship-datasets. Last accessed 28 Jan 2021

  49. Kaggle Homepage: https://www.kaggle.com/rmisra/news-headlines-dataset-for-sarcasm-detection. Last accessed 28 Jan 2021

  50. Kaggle Homepage: https://www.kaggle.com/gpiosenka/sports-classification. Last accessed 28 Jan 2021

  51. EscuelaMLDL Homepage: http://www.escuelamldl.enesmorelia.unam.mx/index.php/es/. Last accessed 28 Jan 2022

Download references

Acknowledgment

We are grateful for the support of the Instituto de Investigaciones en Ecosistemas y Sustentabilidad (IIES), the CA TRATEC - PRODEP of the Universidad Tecnológica de Morelia (UTM), the TecNM campus Morelia, the Escuela Nacional de Estudios Superiores (ENES), UNAM Campus Morelia, and DGAPA UNAM PAPIME PE106021. Especially thanks to MGTI. Atzimba G. López M., MTI. Alberto Valencia G., Eng. Oscar Álvarez, MTI. Pablo García C. and Eng. Javier Huerta S., for their technical support, comments, and analysis of the statistical calculations. We thank Eng. Alfredo A. Aviña, for his help in applying the survey and Web page support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Heberto Ferreira-Medina or José Luis Cendejas-Valdez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tinoco-Martínez, S.R., Ferreira-Medina, H., Cendejas-Valdez, J.L., Hernández-Rendón, F., Flores-Monroy, M.M., Ginori-Rodríguez, B.H. (2023). How to Improve the Teaching of Computational Machine Learning Applied to Large-Scale Data Science: The Case of Public Universities in Mexico. In: Arai, K. (eds) Intelligent Systems and Applications. IntelliSys 2022. Lecture Notes in Networks and Systems, vol 544. Springer, Cham. https://doi.org/10.1007/978-3-031-16075-2_1

Download citation

Publish with us

Policies and ethics