Skip to main content

Bebras Challenge in a Learning Analytics Enriched Environment: Hungarian and Indian Cases

  • Conference paper
  • First Online:
Informatics in Schools. A Step Beyond Digital Education (ISSEP 2022)

Abstract

Education needs to provoke young people to be active participants of modern society and contribute to changing and shaping the world. The international Bebras initiative, with over 70 countries participating, is one of the successful approaches involving school students in solving problems of computer science and deep thinking. In 2021, Finland, Hungary and India, supported by Lithuania, started a research study on solving Bebras tasks integrated into the Finnish virtual learning environment ViLLE using learning analytics. In this paper, we describe the methodology of the research study and two pilots conducted in Hungary and India with 1548 participants in total. A detailed analysis of Hungarian Bebras Challenge run in November 2021 in the ViLLE environment is provided. Results of 33,467 students aged 9–18 are discussed using task difficulty, gender, and time as the underlying variables. Also, a brief overview of feedback from teachers and students on using the ViLLE environment is given. The results from the pilots and from the Hungarian Bebras Challenge show that the ViLLE environment supports the task solving process of the Bebras Challenge and easy adaptive to different languages and task sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Papert, S.: Mindstorms: Children, Computers, and Powerful Ideas. Basic Books Inc., New York (1980)

    Google Scholar 

  2. Wing, J.: Computational thinking. Commun. ACM 49, 33–35 (2006)

    Article  Google Scholar 

  3. Román-González, M., Pérez-González, J.-C., Jiménez-Fernández, C.: Which cognitive abilities underlie computational thinking? Criterion validity of the Computational Thinking Test. Comput. Hum. Behav. 72, 678–691 (2017). https://doi.org/10.1016/j.chb.2016.08.047

    Article  Google Scholar 

  4. Selby, C., Woollard, J.: Computational thinking: the developing definition (2013). https://eprints.soton.ac.uk/356481

  5. Grover, S., Pea, R.: Computational thinking: a competency whose time has come. In: Sentance, S., Barendsen, E., Carsten, S. (eds.) Computer Science Education: Perspectives on Teaching and Learning in School, pp. 19–38. Bloomsbury, London (2018)

    Google Scholar 

  6. Hazzan, O., Ragonis, N., Lapidot, T., Rosenberg-Kima, R.: Computational thinking. In: Guide to Teaching Computer Science, pp. 57–74. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-39360-1_4

  7. Zhang, L., Nouri, J.: A systematic review of learning computational thinking through Scratch in K-9. Comput. Educ. 141, 1–25 (2019). https://doi.org/10.1016/j.compedu.2019.103607

    Article  Google Scholar 

  8. Corradini, I., Lodi, M., Nardelli, E.: Conceptions and misconceptions about computational thinking among Italian primary school teachers. In: ICER – Proceedings of ACM Conference International Computing Education Research, pp. 136–144 (2017). https://doi.org/10.1145/3105726.3106194

  9. Tang, X., Yin, Y., Lin, Q., Hadad, R., Zhai, X.: Assessing computational thinking: a systematic review of empirical studies. Comput. Educ. 148, 1–22 (2020). https://doi.org/10.1016/j.compedu.2019.103798

    Article  Google Scholar 

  10. Metcalf, S.J., et al.: Assessing computational thinking through the lenses of functionality and computational fluency. Comput. Sci. Educ. 31(2), 199–223 (2021). https://doi.org/10.1080/08993408.2020.1866932

    Article  MathSciNet  Google Scholar 

  11. Basu, S., Biswas, G., Kinnebrew, J.S.: Learner modeling for adaptive scaffolding in a computational thinking-based science learning environment. User Model. User-Adap. Inter. 27(1), 5–53 (2017). https://doi.org/10.1007/s11257-017-9187-0

    Article  Google Scholar 

  12. Arfé, B., Vardanega, T., Ronconi, L.: The effects of coding on children’s planning and inhibition skills. Comput. Educ. 148, 1–16 (2020). https://doi.org/10.1016/j.compedu.2020.103807

    Article  Google Scholar 

  13. Palts, T., Pedaste, M.: A model for developing computational thinking skills. Inform. Educ. 19, 113–128 (2020). https://doi.org/10.15388/INFEDU.2020.06

    Article  Google Scholar 

  14. Curzon, P., Bell, T., Waite, J., Dorling, M.: Computational thinking. In: Robins, A.V., Fincher, S.A. (eds.) The Cambridge Handbook of Computing Education Research, pp. 513–546. Cambridge Univ. Press, Cambridge (2019). https://doi.org/10.1017/9781108654555.018

    Chapter  Google Scholar 

  15. Eickelmann, B., Labusch, A., Vennemann, M.: Computational thinking and problem-solving in the context of IEA-ICILS 2018. In: Passey, D., Bottino, R., Lewin, C., Sanchez, E. (eds.) OCCE 2018. IAICT, vol. 524, pp. 14–23. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-23513-0_2

    Chapter  Google Scholar 

  16. Rich, P.J., Mason, S.L., O’Leary, J.: Measuring the effect of continuous professional development on elementary teachers’ self-efficacy to teach coding and computational thinking. Comput. Educ. 168, 104196 (2021). https://doi.org/10.1016/j.compedu.2021.104196

    Article  Google Scholar 

  17. Zhang, L., Nouri, J., Rolandsson, L.: Progression of computational thinking skills in Swedish compulsory schools with block-based programming. In: Proceedings of the Twenty-Second Australasian Computing Education Conference, pp. 66–75 (2020). https://doi.org/10.1145/3373165.3373173

  18. Brennan, K., Resnick, M.: New frameworks for studying and assessing the development of computational thinking. In: Proceedings of the 2012 Annual Meeting of the American Educational Research Association, vol. 1, pp. 1–25, Vancouver (2012)

    Google Scholar 

  19. Hromkovič, J., Lacher, R.: The computer science way of thinking in human history and consequences for the design of computer science curricula. In: Dagiene, V., Hellas, A. (eds.) ISSEP 2017. LNCS, vol. 10696, pp. 3–11. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71483-7_1

    Chapter  Google Scholar 

  20. Hromkovič, J., Kohn, T., Komm, D., Serafini, G.: Combining the power of Python with the simplicity of logo for a sustainable computer science education. In: Brodnik, A., Tort, F. (eds.) ISSEP 2016. LNCS, vol. 9973, pp. 155–166. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46747-4_13

    Chapter  Google Scholar 

  21. Dagienė, V., Stupurienė, G.: Bebras - a sustainable community building model for the concept based learning of informatics and computational thinking. Inf. Educ. 15(1), 25–44 (2016)

    Google Scholar 

  22. Denning, P.J., Tedre, M.: Inf. Educ. 20(1), 361–390 (2021). https://doi.org/10.15388/infedu.2021.21

    Article  Google Scholar 

  23. Dagiene, V., Futschek, G., Stupuriene, G.: Creativity in solving short tasks for learning computational thinking. Constructivist Found. 14(3), 382–396 (2019)

    Google Scholar 

  24. Bell, T., Vahrenhold, J.: CS unplugged – how it is used, and does it work?. In: Böckenhouer, H.-J., Komm, D., Unger, W. (eds.) Adventures Between Lower Bounds and Higher Attitudes: Essays Dedicated to Juraj Hromkovič on the Occasion of His 60th Birthday, pp. 497–521. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98355-4_29

    Chapter  Google Scholar 

  25. Pluhár, Zs.: Extending computational thinking activities. Olympiads Inf. 15, 83–89 (2021)

    Article  Google Scholar 

  26. Laakso, M.-J., Kaila, E., Rajala, T.: ViLLE – collaborative education tool: designing and utilizing an exercise-based learning environment. Educ. Inf. Technol. 23(4), 1655–1676 (2018). https://doi.org/10.1007/s10639-017-9659-1

    Article  Google Scholar 

  27. Kurvinen, E., Dagienė, V., Laakso, M.-J.: The impact and effectiveness of technology enhanced mathematics learning. In: Dagienė, V., Jasutė, E. (eds.) Constructionism 2018: Constructionism, Computational Thinking and Educational Innovation: Conference Proceedings. Vilnius University, pp. 351–363 (2018)

    Google Scholar 

  28. Kurvinen, E., Kaila, E., Laakso, M., Salakoski, T.: Long term effects on technology enhanced learning: the use of weekly digital lessons in mathematics. Inf. Educ. 19(1), 51–75 (2020). https://doi.org/10.15388/infedu.2020.04

    Article  Google Scholar 

  29. Dagienė, V., Stupurienė, G., Vinikienė, L.: Implementation of dynamic tasks on informatics and computational thinking. Baltic J. Mod. Comput. 5(3), 306–316 (2017)

    Article  Google Scholar 

  30. Pluhár, Zs., Gellér, B.: International informatic challenge in hungary. In: Auer, M.E., Guralnick, D., Simonics, I. (eds.) Teaching and Learning in a Digital World: Proceedings of the 20th International Conference on Interactive Collaborative Learning, pp 425-435. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-73204-6_47

  31. Hubwieser, P., Hubwieser, E., Graswald, D.: How to attract the girls: gender-specific performance and motivation in the bebras challenge. In: Brodnik, A., Tort, F. (eds.) ISSEP 2016. LNCS, vol. 9973, pp. 40–52. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46747-4_4

    Chapter  Google Scholar 

  32. Budinská, L., Mayerová, K., Veselovská, M.: Bebras task analysis in category little beavers in slovakia. In: Dagiene, V., Hellas, A. (eds.) ISSEP 2017. LNCS, vol. 10696, pp. 91–101. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71483-7_8

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zsuzsa Pluhár .

Editor information

Editors and Affiliations

Appendices

Appendix A - Schemas

The schema for the process of organizing a Bebras Challenge in ViLLE

figure a

Appendix B - Figures Representing Data in Hungarian Bebras Challenge 2021

Map of the participation in the Bebras Challenge 2021 in Hungary

figure b

Participation in Hungarian Bebras Challenge by age group (2011–2021).

figure c

The standard deviations of scores in each age group

Age group

Number of participants

(girls/boys)

Mean of scores

(girls/boys)

Standard deviation of scores

(girls/boys)

Little Beavers

(9–10)

1760

(833/927)

66.60

(67.61/65.69)

27.11

(26.64/27.50)

Benjamins

(11–12)

7963

(3859/4104)

104.31

(104.41/104.22)

41.56

(40.56/42.47)

Cadets

(13–14)

8469

(4275/4194)

118.35

(118.30/118.40)

42.09

(40.66/43.51)

Juniors

(15–16)

12491

(5929/6562)

111.25

(110.21/112.20)

35.62

(34.61/36.49)

Seniors

(17–18)

2784

(808/1976)

93.98

(89.06/96.00)

30.80

(28.19/31.59)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pluhár, Z. et al. (2022). Bebras Challenge in a Learning Analytics Enriched Environment: Hungarian and Indian Cases. In: Bollin, A., Futschek, G. (eds) Informatics in Schools. A Step Beyond Digital Education. ISSEP 2022. Lecture Notes in Computer Science, vol 13488. Springer, Cham. https://doi.org/10.1007/978-3-031-15851-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15851-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15850-6

  • Online ISBN: 978-3-031-15851-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics