Skip to main content

Liposomal Drug Delivery in Malaria

  • Chapter
  • First Online:
Malarial Drug Delivery Systems

Abstract

Malaria is one of the greatest health challenges worldwide and produces a great challenge to formulation scientists. Poor rate of development in the antiparasitic segment has demanded effective management of existing drugs by modifying their delivery. Colloidal delivery systems, especially liposomes, have been receiving special attention in prophylaxis of malaria. Liposomes protect antigen from degradation, have been extensively used as delivery system or adjuvant for vaccine antigen against infectious disease like malaria. They are biocompatible and biodegradable. Peptides encapsulated in liposomes can be easily phagocytosed by antigen-presenting cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cox FE. History of the discovery of the malaria parasites and their vectors. Parasit Vectors [Internet]. 2010;3(1):5. Available from: http://parasitesandvectors.biomedcentral.com/articles/10.1186/1756-3305-3-5

    PubMed  Google Scholar 

  2. Santos-Magalhães NS, Mosqueira VCF. Nanotechnology applied to the treatment of malaria. Adv Drug Deliv Rev [Internet]. 2010;62(4–5):560–75. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0169409X09003652

    PubMed  Google Scholar 

  3. Lucantoni L, Avery V. Whole-cell in vitro screening for gametocytocidal compounds. Future Med Chem [Internet]. 2012;4(18):2337–60. Available from: https://www.future-science.com/doi/10.4155/fmc.12.188

    CAS  PubMed  Google Scholar 

  4. Kraft JC, Freeling JP, Wang Z, Ho RJY. Emerging research and clinical development trends of liposome and lipid nanoparticle drug delivery systems. J Pharm Sci [Internet]. 2014;103(1):29–52. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0022354915307814

    CAS  PubMed  Google Scholar 

  5. Angst MS, Drover DR. Pharmacology of drugs formulated with DepoFoam??? Clin Pharmacokinet [Internet]. 2006;45(12):1153–76. Available from: http://link.springer.com/10.2165/00003088-200645120-00002

    CAS  PubMed  Google Scholar 

  6. Katre NV. Liposome-based depot injection technologies. Am J Drug Deliv [Internet]. 2004;2(4):213–27. Available from: http://link.springer.com/10.2165/00137696-200402040-00002

    CAS  Google Scholar 

  7. Singh B, Daneshvar C. Human infections and detection of plasmodium knowlesi. Clin Microbiol Rev [Internet]. 2013;26(2):165–84. Available from: https://journals.asm.org/doi/10.1128/CMR.00079-12

    CAS  PubMed  Google Scholar 

  8. Esfahani DR, Tangen KM, Sadeh M, Seksenyan A, Neisewander BL, Mehta AI, et al. Systems engineers’ role in biomedical research. Convection-enhanced drug delivery. In: Computer Aided Chemical Engineering. Elsevier; 2018. p. 271–302. Available from: https://linkinghub.elsevier.com/retrieve/pii/B978044463964600009X.

  9. Bhaw-Luximon A, Goonoo N, Jhurry D. Nanotherapeutics promises for colorectal cancer and pancreatic ductal adenocarcinoma. In: Nanobiomaterials in Cancer Therapy [Internet]. Elsevier; 2016. p. 147–201. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780323428637000062

  10. Rai M, Ingle AP, Paralikar P, Gupta I, Medici S, Santos CA. Recent advances in use of silver nanoparticles as antimalarial agents. Int J Pharm [Internet]. 2017;526(1–2):254–70. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0378517317303447

    CAS  PubMed  Google Scholar 

  11. Heurtault B, Legrand P, Mosqueira V, Devissaguet J-P, Barratt G, Bories C. The antileishmanial properties of surface-modified, primaquine-loaded nanocapsules tested against intramacrophagic Leishmania donovani amastigotes in vitro. Ann Trop Med Parasitol [Internet]. 2001;95(5):529–33. Available from: https://www.tandfonline.com/doi/full/10.1080/00034983.2001.11813665

    CAS  PubMed  Google Scholar 

  12. Anamika J, Nikhar V, Laxmikant G, Priya S, Sonal V, Vyas SP. Nanobiotechnological modules as molecular target tracker for the treatment and prevention of malaria: options and opportunity. Drug Deliv Transl Res [Internet]. 2020;10(4):1095–110. Available from: https://link.springer.com/10.1007/s13346-020-00770-z

    PubMed  Google Scholar 

  13. Attia MF, Anton N, Wallyn J, Omran Z, Vandamme TF. An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites. J Pharm Pharmacol [Internet]. 2019;71(8):1185–98. Available from: https://academic.oup.com/jpp/article/71/8/1185-1198/6122081

    CAS  PubMed  Google Scholar 

  14. Mosqueira VCF, Legrand P, Barratt G. Surface-modified and conventional Nanocapsules as novel formulations for parenteral delivery of Halofantrine. J Nanosci Nanotechnol [Internet]. 2006;6(9):3193–202. Available from: https://www.ingentaconnect.com/content/10.1166/jnn.2006.444

    CAS  PubMed  Google Scholar 

  15. Samkange T, D’Souza S, Obikeze K, Dube A. Influence of PEGylation on PLGA nanoparticle properties, hydrophobic drug release and interactions with human serum albumin. J Pharm Pharmacol [Internet]. 2019;71(10):1497–507. Available from: https://academic.oup.com/jpp/article/71/10/1497-1507/6122023

    CAS  PubMed  Google Scholar 

  16. Working PK, Newman MS, Huang SK, Mayhew E, Vaage J, Lasic DD. Pharmacokinetics, biodistribution and therapeutic efficacy of doxorubicin encapsulated in stealth® liposomes (Doxil®). J Liposome Res [Internet]. 1994;4(1):667–87. Available from: http://www.tandfonline.com/doi/full/10.3109/08982109409037065

    Google Scholar 

  17. Gregoriadis G, Leathwood PD, Ryman BE. Enzyme entrapment in liposomes. FEBS Lett [Internet]. 1971;14(2):95–9. Available from: http://doi.wiley.com/10.1016/0014-5793%2871%2980109-6

    CAS  PubMed  Google Scholar 

  18. Gregoriadis G. Drug entrapment in liposomes: possibilities for chemotherapy. Biochem Soc Trans [Internet]. 1974;2(1):117–9. Available from: https://portlandpress.com/biochemsoctrans/article/2/1/117/57687/Drug-Entrapment-in-Liposomes-Possibilities-for

    CAS  Google Scholar 

  19. Schroit AJ, Fidler IJ. Effects of liposome structure and lipid composition on the activation of the tumoricidal properties of macrophages by liposomes containing muramyl dipeptide. Cancer Res [Internet]. 1982;42(1):161–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7053846

    CAS  PubMed  Google Scholar 

  20. Lasic D. Novel applications of liposomes. Trends Biotechnol [Internet]. 1998;16(7):307–21. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0167779998012207

    CAS  PubMed  Google Scholar 

  21. Weingarten C, Moufti A, Desjeux JF, Luong TT, Durand G, Devissaguet JP, et al. Oral ingestion of insulin liposomes: effects of the administration route. Life Sci [Internet]. 1981;28(24):2747–52. Available from: https://linkinghub.elsevier.com/retrieve/pii/0024320581901764

    CAS  PubMed  Google Scholar 

  22. Papahadjopoulos D, Gabizon A. Liposomes designed to avoid the reticuloendothelial system. Prog Clin Biol Res [Internet]. 1990;343:85–93. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2198586

    CAS  PubMed  Google Scholar 

  23. Singhal A, Gupta CM. Antibody-mediated targeting of liposomes to red cells in vivo. FEBS Lett [Internet]. 1986;201(2):321–6. Available from: http://doi.wiley.com/10.1016/0014-5793%2886%2980632-9

    CAS  PubMed  Google Scholar 

  24. Agrawal AK, Singhal A, Gupta CM. Functional drug targeting to erythrocytes in vivo using antibody bearing liposomes as drug vehicles. Biochem Biophys Res Commun [Internet]. 1987;148(1):357–61. Available from: https://linkinghub.elsevier.com/retrieve/pii/0006291X87911181

    CAS  PubMed  Google Scholar 

  25. Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov [Internet]. 2005;4(2):145–60. Available from: http://www.nature.com/articles/nrd1632

    CAS  PubMed  Google Scholar 

  26. Agrawal AK, Gupta C. Tuftsin-bearing liposomes in treatment of macrophage-based infections. Adv Drug Deliv Rev [Internet]. 2000;41(2):135–46. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0169409X99000617

    CAS  PubMed  Google Scholar 

  27. Pirson P, Steiger RF, Trouet A, Gillet J, Herman F. Liposomes in the chemotherapy of experimental murine malaria. Trans R Soc Trop Med Hyg [Internet]. 1979;73(3):347. Available from: https://academic.oup.com/trstmh/article-lookup/doi/10.1016/0035-9203(79)90103-2

    CAS  PubMed  Google Scholar 

  28. Smith JE, Pirson P, Sinden RE. Studies on the kinetics of uptake and distribution of free and liposome-entrapped primaquine, and of sporozoites by isolated perfused rat liver. Ann Trop Med Parasitol [Internet]. 1983;77(4):379–86. Available from: https://www.tandfonline.com/doi/full/10.1080/00034983.1983.11811725

    CAS  PubMed  Google Scholar 

  29. Qiu L, Jing N, Jin Y. Preparation and in vitro evaluation of liposomal chloroquine diphosphate loaded by a transmembrane pH-gradient method. Int J Pharm [Internet]. 2008;361(1–2):56–63. Available from: https://linkinghub.elsevier.com/retrieve/pii/S037851730800361X

    CAS  PubMed  Google Scholar 

  30. Trouet AU, Pirson P, Steiger R, Masquelier M, Baurain R, Gillet J. Development of new derivatives of primaquine by association with lysosomotropic carriers. Bull World Health Organ [Internet]. 1981;59(3):449–58. Available from: http://www.ncbi.nlm.nih.gov/pubmed/6976852

    CAS  PubMed  Google Scholar 

  31. Cullis PR, Hope MJ, Bally MB, Madden TD, Mayer LD, Fenske DB. Influence of pH gradients on the transbilayer transport of drugs, lipids, peptides and metal ions into large unilamellar vesicles. Biochim Biophys Acta – Rev Biomembr [Internet]. 1997;1331(2):187–211. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0304415797000063

    CAS  Google Scholar 

  32. Brossi A, Venugopalan B, Dominguez Gerpe L, Yeh HJC, Flippen-Anderson JL, Buchs P, et al. Arteether, a new antimalarial drug: synthesis and antimalarial properties. J Med Chem [Internet]. 1988;31(3):645–50. Available from: https://pubs.acs.org/doi/abs/10.1021/jm00398a026

    CAS  PubMed  Google Scholar 

  33. Al-Angary AA, Al-Meshal MA, Bayomi MA, Khidr SH. Evaluation of liposomal formulations containing the antimalarial agent, arteether. Int J Pharm [Internet]. 1996;128(1–2):163–8. Available from: https://linkinghub.elsevier.com/retrieve/pii/0378517395042733

    CAS  Google Scholar 

  34. Bayomi MA, Al-Angary AA, Al-Meshal MA, Al-Dardiri MM. In vivo evaluation of arteether liposomes. Int J Pharm [Internet]. 1998;175(1):1–7. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0378517398001823

    CAS  Google Scholar 

  35. Chimanuka B, Gabriëls M, Detaevernier M-R, Plaizier-Vercammen J. Preparation of β-artemether liposomes, their HPLC–UV evaluation and relevance for clearing recrudescent parasitaemia in plasmodium chabaudi malaria-infected mice. J Pharm Biomed Anal [Internet]. 2002;28(1):13–22. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0731708501006112

    CAS  PubMed  Google Scholar 

  36. Gabriëls M. Physical and chemical evaluation of liposomes, containing artesunate. J Pharm Biomed Anal [Internet]. 2003;31(4):655–67. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0731708502006787

    PubMed  Google Scholar 

  37. Pirson P, Steiger RF, Trouet A, Gillet J, Herman F. Primaquine liposomes in the chemotherapy of experimental murine malaria. Ann Trop Med Parasitol [Internet]. 1980;74(4):383–91. Available from: http://www.tandfonline.com/doi/full/10.1080/00034983.1980.11687359

    CAS  PubMed  Google Scholar 

  38. Pirson P, Steiger R, Trouet A. The disposition of free and liposomally encapsulated antimalarial primaquine in mice. Biochem Pharmacol [Internet]. 1982;31(21):3501–7. Available from: https://linkinghub.elsevier.com/retrieve/pii/0006295282906335

    CAS  PubMed  Google Scholar 

  39. Peeters PAM, Brunink BG, Eling WMC, Cromelin DJA. Therapeutic effect of chloroquine(CQ)-containing immunoliposomes in rats infected with plasmodium berghei parasitized mouse red blood cells: comparison with combinations of antibodies and CQ or liposomal CQ. Biochim Biophys Acta - Biomembr [Internet]. 1989;981(2):269–76. Available from: https://linkinghub.elsevier.com/retrieve/pii/0005273689900370

    CAS  Google Scholar 

  40. Peeters PA, de Leest K, Eling WM, Crommelin DJ. Chloroquine blood levels after administration of the liposome-encapsulated drug in relation to therapy of murine malaria. Pharm Res [Internet]. 1989;6(9):787–93. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2682591

    CAS  PubMed  Google Scholar 

  41. Arica B, Özer AY, Ercan MT, Hincal AA. Characterization, in vitro and in vivo studies on primaquine diphosphate liposomes. J Microencapsul [Internet]. 1995;12(5):469–85. Available from: http://www.tandfonline.com/doi/full/10.3109/02652049509006778

    CAS  PubMed  Google Scholar 

  42. Postma NS, Hermsen CC, Zuidema J, Eling WMC. Plasmodium vinckei:Optimization of Desferrioxamine B Delivery in the Treatment of Murine Malaria. Exp Parasitol [Internet]. 1998;89(3):323–330. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0014489498942825.

  43. Henriksen I, Våagen SR, Sande SA, Smistad G, Karlsen J. Interactions between liposomes and chitosan II: effect of selected parameters on aggregation and leakage. Int J Pharm [Internet]. 1997;146(2):193–203. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0378517396048016

    CAS  Google Scholar 

  44. Longmuir KJ, Robertson RT, Haynes SM, Baratta JL, Waring AJ. Effective targeting of liposomes to liver and hepatocytes in vivo by incorporation of a plasmodium amino acid sequence. Pharm Res [Internet]. 2006;23(4):759–69. Available from: http://link.springer.com/10.1007/s11095-006-9609-x

    CAS  PubMed  Google Scholar 

  45. Haynes SM, Longmuir KJ, Robertson RT, Baratta JL, Waring AJ. Liposomal Polyethyleneglycol and Polyethyleneglycol-peptide combinations for active targeting to liver in vivo. Drug Deliv [Internet]. 2008;15(4):207–17. Available from: http://www.tandfonline.com/doi/full/10.1080/10717540802006211

    CAS  PubMed  Google Scholar 

  46. Owais M, Varshney GC, Choudhury A, Chandra S, Gupta CM. Chloroquine encapsulated in malaria-infected erythrocyte-specific antibody-bearing liposomes effectively controls chloroquine-resistant plasmodium berghei infections in mice. Antimicrob Agents Chemother [Internet]. 1995;39(1):180–4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7695303

    CAS  PubMed  Google Scholar 

  47. Zou L, Miles AP, Wang J, Stowers AW. Expression of malaria transmission-blocking vaccine antigen Pfs25 in Pichia pastoris for use in human clinical trials. Vaccine [Internet]. 2003;21(15):1650–7. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0264410X02007016

    CAS  PubMed  Google Scholar 

  48. van Rooijen N, van Nieuwmegen R. Liposomes in immunology: evidence that theiradjuvant effect results from surface exposition of the antigens. Cell Immunol [Internet]. 1980;49(2):402–7. Available from: https://linkinghub.elsevier.com/retrieve/pii/000887498090043X

  49. Bangham AD, Standish MM, Watkins JC. Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol [Internet]. 1965;13(1):238-IN27. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0022283665800936

    Google Scholar 

  50. Bangham AD, Hill MW, Miller NGA. Preparation and Use of Liposomes as Models of Biological Membranes. In: Methods in Membrane Biology [Internet]. Boston, MA: Springer US; 1974. p. 1–68. Available from: http://link.springer.com/10.1007/978-1-4615-7422-4_1

  51. Alving CR, Peachman KK, Matyas GR, Rao M, Beck Z. Army liposome formulation (ALF) family of vaccine adjuvants. Expert Rev Vaccines [Internet]. 2020;19(3):279–92. Available from: https://www.tandfonline.com/doi/full/10.1080/14760584.2020.1745636

    CAS  PubMed  Google Scholar 

  52. Ghaffar K, Giddam A, Zaman M, Skwarczynski M, Toth I. Liposomes as Nanovaccine delivery systems. Curr Top Med Chem [Internet]. 2014;14(9):1194–208. Available from: http://www.eurekaselect.com/openurl/content.php?genre=article&issn=1568-0266&volume=14&issue=9&spage=1194

    PubMed  Google Scholar 

  53. Giddam AK, Zaman M, Skwarczynski M, Toth I. Liposome-based delivery system for vaccine candidates: constructing an effective formulation. Nanomedicine [Internet]. 2012;7(12):1877–93. Available from: https://www.futuremedicine.com/doi/10.2217/nnm.12.157

    CAS  PubMed  Google Scholar 

  54. Griesenauer RH, Kinch MS. An overview of FDA-approved vaccines & their innovators. Expert Rev Vaccines [Internet]. 2017;16(12):1253–66. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28931331

    CAS  PubMed  Google Scholar 

  55. Ratto-Kim S, Yoon I-K, Paris RM, Excler J-L, Kim JH, O’Connell RJ. The US military commitment to vaccine development: a century of successes and challenges. Front Immunol [Internet]. 2018;9:1397. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29977239

    PubMed  Google Scholar 

  56. Matyas GR, Muderhwa JM, Alving CR. Oil-in-Water Liposomal Emulsions for Vaccine Delivery. In: Methods in enzymology. Academic Press; 2003. p. 34–50. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0076687903730031.

  57. Beck Z, Matyas GR, Alving CR. Detection of liposomal cholesterol and monophosphoryl lipid a by QS-21 saponin and Limulus polyphemus amebocyte lysate. Biochim Biophys Acta – Biomembr [Internet]. 2015;1848(3):775–80. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0005273614004337

    CAS  Google Scholar 

  58. Alving CR, Richards RL, Moss J, Alving LI, Clements JD, Shiba T, et al. Effectiveness of liposomes as potential carriers of vaccines: applications to cholera toxin and human malaria sporozoite antigen. Vaccine [Internet]. 1986;4(3):166–72. Available from: https://linkinghub.elsevier.com/retrieve/pii/0264410X86900058

    CAS  PubMed  Google Scholar 

  59. Didierlaurent AM, Laupèze B, Di Pasquale A, Hergli N, Collignon C, Garçon N. Adjuvant system AS01: helping to overcome the challenges of modern vaccines. Expert Rev Vaccines [Internet]. 2017;16(1):55–63. Available from: https://www.tandfonline.com/doi/full/10.1080/14760584.2016.1213632

    CAS  PubMed  Google Scholar 

  60. Ssemaganda A, Giddam AK, Zaman M, Skwarczynski M, Toth I, Stanisic DI, et al. Induction of plasmodium-specific immune responses using liposome-based vaccines. Front Immunol [Internet]. 2019;10:135. Available from: https://www.frontiersin.org/article/10.3389/fimmu.2019.00135/full

    CAS  PubMed  Google Scholar 

  61. Alving CR, Rao M, Steers NJ, Matyas GR, Mayorov AV. Liposomes containing lipid a: an effective, safe, generic adjuvant system for synthetic vaccines. Expert Rev Vaccines [Internet]. 2012;11(6):733–44. Available from: http://www.tandfonline.com/doi/full/10.1586/erv.12.35

    CAS  PubMed  Google Scholar 

  62. White W. Antibody and cytotoxic T-lymphocyte responses to a single liposome-associated peptide antigen. Vaccine [Internet]. 1995;13(12):1111–22. Available from: https://linkinghub.elsevier.com/retrieve/pii/0264410X9400058U

    CAS  PubMed  Google Scholar 

  63. Garçon N, Van Mechelen M. Recent clinical experience with vaccines using MPL- and QS-21-containing adjuvant systems. Expert Rev Vaccines [Internet]. 2011;10(4):471–86. Available from: http://www.tandfonline.com/doi/full/10.1586/erv.11.29

    PubMed  Google Scholar 

  64. Regules JA, Cicatelli SB, Bennett JW, Paolino KM, Twomey PS, Moon JE, et al. Fractional third and fourth dose of RTS,S/AS01 malaria candidate vaccine: a phase 2a controlled human malaria parasite infection and immunogenicity study. J Infect Dis [Internet]. 2016;214(5):762–71. Available from: https://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiw237

    CAS  PubMed  Google Scholar 

  65. Seth L, Bingham Ferlez KM, Kaba SA, Musser DM, Emadi S, Matyas GR, et al. Development of a self-assembling protein nanoparticle vaccine targeting plasmodium falciparum Circumsporozoite protein delivered in three Army liposome formulation adjuvants. Vaccine [Internet]. 2017;35(41):5448–54. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0264410X17302438

    CAS  PubMed  Google Scholar 

  66. Tyagi RK, Garg NK, Jadon R, Sahu T, Katare OP, Dalai SK, et al. Elastic liposome-mediated transdermal immunization enhanced the immunogenicity of P. falciparum surface antigen, MSP-119. Vaccine [Internet]. 2015;33(36):4630–8. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0264410X15008439

    CAS  PubMed  Google Scholar 

  67. Huang W-C, Deng B, Lin C, Carter KA, Geng J, Razi A, et al. A malaria vaccine adjuvant based on recombinant antigen binding to liposomes. Nat Nanotechnol [Internet]. 2018;13(12):1174–81. Available from: http://www.nature.com/articles/s41565-018-0271-3

    CAS  PubMed  Google Scholar 

  68. Sharma SK, Gupta C, Dwivedi V, Misra-Bhattacharya S, Mohammad O. Prophylactic potential of liposomized integral membrane protein of plasmodium yoelii nigeriensis against blood stage infection in BALB/c mice. Vaccine [Internet]. 2007;25(11):2103–11. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0264410X06012229

    CAS  PubMed  Google Scholar 

  69. Richards RL, Rao M, Wassef NM, Glenn GM, Rothwell SW, Alving CR. Liposomes containing lipid a serve as an adjuvant for induction of antibody and cytotoxic T-cell responses against RTS,S malaria antigen. Infect Immun [Internet]. 1998;66(6):2859–65. Available from: https://journals.asm.org/doi/10.1128/IAI.66.6.2859-2865.1998

    CAS  PubMed  Google Scholar 

  70. Fries LF, Gordon DM, Richards RL, Egan JE, Hollingdale MR, Gross M, et al. Liposomal malaria vaccine in humans: a safe and potent adjuvant strategy. Proc Natl Acad Sci [Internet]. 1992;89(1):358–62. Available from: http://www.pnas.org/cgi/doi/10.1073/pnas.89.1.358

    CAS  PubMed  Google Scholar 

  71. Richards RL, Hayre MD, Hockmeyer WT, Alving CR. Liposomes, lipid a, and aluminum hydroxide enhance the immune response to a synthetic malaria sporozoite antigen. Infect Immun [Internet]. 1988;56(3):682–6. Available from: https://journals.asm.org/doi/10.1128/iai.56.3.682-686.1988

    CAS  PubMed  Google Scholar 

  72. Richards R, Swartzjr G, Schultz C, Hayre M, Ward G, Ballou W, et al. Immunogenicity of liposomal malaria sporozoite antigen in monkeys: adjuvant effects of aluminium hydroxide and non-pyrogenic liposomal lipid a. Vaccine [Internet]. 1989;7(6):506–12. Available from: https://linkinghub.elsevier.com/retrieve/pii/0264410X89902740

    CAS  PubMed  Google Scholar 

  73. Verma JN, Rao M, Amselem S, Krzych U, Alving CR, Green SJ, et al. Adjuvant effects of liposomes containing lipid a: enhancement of liposomal antigen presentation and recruitment of macrophages. Infect Immun [Internet]. 1992;60(6):2438–44. Available from: https://journals.asm.org/doi/10.1128/iai.60.6.2438-2444.1992

    CAS  PubMed  Google Scholar 

  74. Allen TM, Cullis PR. Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev [Internet]. 2013;65(1):36–48. Available from:. https://doi.org/10.1016/j.addr.2012.09.037.

    Article  CAS  PubMed  Google Scholar 

  75. Bulbake U, Doppalapudi S, Kommineni N, Khan W. Liposomal formulations in clinical use: an updated review. Pharmaceutics. 2017;9(2):1–33.

    Google Scholar 

  76. Dame JB, Williams JL, McCutchan TF, Weber JL, Wirtz RA, Hockmeyer WT, et al. Structure of the gene encoding the Immunodominant surface antigen on the Sporozoite of the human malaria parasite plasmodium falciparum. Science (80- )[Internet]. 1984;225(4662):593–9. Available from: https://www.science.org/doi/10.1126/science.6204383

    CAS  Google Scholar 

  77. Webster HK, Boudreau EF, Pang LW, Permpanich B, Sookto P, Wirtz RA. Development of immunity in natural plasmodium falciparum malaria: antibodies to the falciparum sporozoite vaccine 1 antigen (R32tet32). J Clin Microbiol [Internet]. 1987;25(6):1002–8. Available from: https://journals.asm.org/doi/10.1128/jcm.25.6.1002-1008.1987

    CAS  PubMed  Google Scholar 

  78. Gregoriadis G, Gursel I, Gursel M, McCormack B. Liposomes as immunological adjuvants and vaccine carriers. J Control Release [Internet]. 1996;41(1–2):49–56. Available from: https://linkinghub.elsevier.com/retrieve/pii/0168365996013557

    CAS  Google Scholar 

  79. Ballou WR, Cahill CP. Two decades of commitment to malaria vaccine development: GlaxoSmithKline biologicals. Am J Trop Med Hyg [Internet]. 2007;77(6 Suppl):289–95. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18165505

    PubMed  Google Scholar 

  80. Stoute JA, Slaoui M, Heppner DG, Momin P, Kester KE, Desmons P, et al. A preliminary evaluation of a recombinant Circumsporozoite protein vaccine against plasmodium falciparum malaria. N Engl J Med [Internet]. 1997;336(2):86–91. Available from: http://www.nejm.org/doi/abs/10.1056/NEJM199701093360202

    CAS  PubMed  Google Scholar 

  81. GlaxoSmithKline. RTS,S/AS01 Candidate Malaria vaccine Summary for the SAGE meeting [Internet]. 2009. Available from: https://www.who.int/immunization/sage/1_SAGE_RTSS_summary_final_Malaria.pdf

  82. RTS SCTP. Efficacy and Safety of the RTS,S/AS01 Malaria Vaccine during 18 Months after Vaccination: A Phase 3 Randomized, Controlled Trial in Children and Young Infants at 11 African Sites. Krishna S, editor. PLoS Med [Internet]. 2014;11(7):e1001685. Available from: https://dx.plos.org/10.1371/journal.pmed.1001685

  83. RTS SCTP. Efficacy and safety of RTS,S/AS01 malaria vaccine with or without a booster dose in infants and children in Africa: final results of a phase 3, individually randomised, controlled trial. Lancet [Internet]. 2015;386(9988):31–45. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0140673615607218

    Google Scholar 

  84. Grüring C, Heiber A, Kruse F, Ungefehr J, Gilberger T-W, Spielmann T. Development and host cell modifications of plasmodium falciparum blood stages in four dimensions. Nat Commun [Internet]. 2011;2(1):165. Available from: http://www.nature.com/articles/ncomms1169

    PubMed  Google Scholar 

  85. Beeson JG, Drew DR, Boyle MJ, Feng G, Fowkes FJI, Richards JS. Merozoite surface proteins in red blood cell invasion, immunity and vaccines against malaria. van Ooij C, editor. FEMS Microbiol Rev [Internet]. 2016;40(3):343–72. Available from: https://academic.oup.com/femsre/article-lookup/doi/10.1093/femsre/fuw001

  86. Agger EM, Rosenkrands I, Hansen J, Brahimi K, Vandahl BS, Aagaard C, et al. Cationic Liposomes Formulated with Synthetic Mycobacterial Cordfactor (CAF01): A Versatile Adjuvant for Vaccines with Different Immunological Requirements. Rodrigues MM, editor. PLoS One [Internet]. 2008;3(9):e3116. Available from: https://dx.plos.org/10.1371/journal.pone.0003116

  87. Wu Y, Ellis RD, Shaffer D, Fontes E, Malkin EM, Mahanty S, et al. Phase 1 Trial of Malaria Transmission Blocking Vaccine Candidates Pfs25 and Pvs25 Formulated with Montanide ISA 51. Ratner AJ, editor. PLoS One [Internet]. 2008 Jul 9;3(7):e2636. Available from: https://dx.plos.org/10.1371/journal.pone.0002636

  88. Tiwari S, Goyal AK, Mishra N, Khatri K, Vaidya B, Mehta A, et al. Development and characterization of novel carrier gel core liposomes based transmission blocking malaria vaccine. J Control Release [Internet]. 2009;140(2):157–65. Available from: https://linkinghub.elsevier.com/retrieve/pii/S016836590900546X

    CAS  PubMed  Google Scholar 

  89. Moghimi SM, Hunter AC, Murray JC. Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev [Internet]. 2001;53(2):283–318. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11356986

    CAS  PubMed  Google Scholar 

  90. Ogawa S, Ota Z, Shikata K, Hironaka K, Hayashi Y, Ota K, et al. High-resolution ultrastructural comparison of renal glomerular and tubular basement membranes. Am J Nephrol [Internet]. 1999;19(6):686–93. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10592365

    CAS  PubMed  Google Scholar 

  91. Venturoli D, Rippe B. Ficoll and dextran vs. globular proteins as probes for testing glomerular permselectivity: effects of molecular size, shape, charge, and deformability. Am J Physiol Physiol [Internet]. 2005;288(4):F605–13. Available from: https://www.physiology.org/doi/10.1152/ajprenal.00171.2004

    CAS  Google Scholar 

  92. Kramp RA, Lenoir RH, Denef J, Ghys A. Effects of the diuretic torasemide on p-aminohippuric acid transport in the rat. Arzneimittelforschung [Internet]. 1985;35(10):1536–41. Available from: http://www.ncbi.nlm.nih.gov/pubmed/4074410

    CAS  PubMed  Google Scholar 

  93. Mann JFS, Shakir E, Carter KC, Mullen AB, Alexander J, Ferro VA. Lipid vesicle size of an oral influenza vaccine delivery vehicle influences the Th1/Th2 bias in the immune response and protection against infection. Vaccine [Internet]. 2009;27(27):3643–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19464545

    CAS  PubMed  Google Scholar 

  94. Urbán P, Valle-Delgado JJ, Mauro N, Marques J, Manfredi A, Rottmann M, et al. Use of poly(amidoamine) drug conjugates for the delivery of antimalarials to plasmodium. J Control Release [Internet]. 2014;177:84–95. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0168365913009747

    PubMed  Google Scholar 

  95. Drummond DC, Meyer O, Hong K, Kirpotin DB, Papahadjopoulos D. Optimizing liposomes for delivery of chemotherapeutic agents to solid tumors. Pharmacol Rev [Internet]. 1999;51(4):691–743. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10581328

    CAS  PubMed  Google Scholar 

  96. Stensrud G, Sande SA, Kristensen S, Smistad G. Formulation and characterisation of primaquine loaded liposomes prepared by a pH gradient using experimental design. Int J Pharm [Internet]. 2000;198(2):213–28. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0378517300003380

    CAS  PubMed  Google Scholar 

  97. Ostro MJ, Cullis PR. Use of liposomes as injectable-drug delivery systems. Am J Hosp Pharm [Internet]. 1989;46(8):1576–87. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2672806

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hazarika, H. et al. (2023). Liposomal Drug Delivery in Malaria. In: Shegokar, R., Pathak, Y. (eds) Malarial Drug Delivery Systems. Springer, Cham. https://doi.org/10.1007/978-3-031-15848-3_8

Download citation

Publish with us

Policies and ethics