Skip to main content

Diabetic Sensory Neurons, Dorsal Root Ganglia, and Neuropathy

  • Chapter
  • First Online:
Diabetic Neuropathy

Part of the book series: Contemporary Diabetes ((CDI))

  • 839 Accesses

Abstract

Sensory neurons are critical targets in diabetes mellitus (DM). Diabetic polyneuropathy (DPN) can be considered a unique form of sensory predominant neurodegeneration that renders loss of distal axon terminals, especially those in the skin, with relative preservation of their cell body (perikarya). Patients experience loss of sensation (numbness), gait instability with falls, unrecognized injury of insensate limbs with skin ulceration, and neuropathic pain. Sensory neurons reside in paraspinal dorsal root (and trigeminal) ganglia (DRGs) possessing unique microvascular and barrier properties that lead to greater vulnerability from DM. The molecular responses of sensory neurons differ from those of axotomized peripheral neurons. In DM the changes emphasize downregulation of key structural proteins, shifts in ion channel expression, and attenuated growth proteins all indicative of chronic neurotoxic stress. Changes in several differentially expressed mRNAs and miRNAs of DRG neurons in DPN, such as CWC22 and mmu-Let-7i, may contribute to sensory dysfunction. Finally, molecular strategies emphasizing regenerative impacts, including topical approaches, have the capacity to reverse features of DPN including loss of skin innervation. These have included local insulin (intrathecal, intranasal, near nerve, intrahindpaw) given in doses that do not alter hyperglycemia, GLP-1 agonists, PTEN (phosphatase and tensin homolog deleted on chromosome 10) inhibition or knockdown, and muscarinic antagonists. Several additional and novel strategies are emerging that may influence axonal degeneration of distal sensory terminals or axon regeneration specifically. Despite a limited clinical trial track record over several decades, new mechanistic insights for translation in DPN offer hope for better trial results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wild S, Roglic G, Green A, et al. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care. 2004;27:1047–53.

    PubMed  Google Scholar 

  2. Capes S, Anand S. What is type 2 diabetes? In: Gerstein HC, Haynes RB, editors. Evidence-based diabetes care. Hamilton: Bc Decker; 2001. p. 151–63.

    Google Scholar 

  3. Zochodne DW, Said G. Recombinant human nerve growth factor and diabetic polyneuropathy. Neurology. 1998;51:662–3.

    CAS  PubMed  Google Scholar 

  4. Apfel SC, Kessler JA, Adornato BT, et al. Recombinant human nerve growth factor in the treatment of diabetic polyneuropathy. NGF Study Group. Neurology. 1998;51:695–702.

    CAS  PubMed  Google Scholar 

  5. Bril V. Invited review: status of current clinical trials in diabetic polyneuropathy. Can J Neurol Sci. 2001;28:191–8.

    CAS  PubMed  Google Scholar 

  6. Brown MJ, Asbury AK. Diabetic neuropathy. Ann Neurol. 1984;15:2–12.

    CAS  PubMed  Google Scholar 

  7. Zochodne DW. Diabetic neuropathies: features and mechanisms. Brain Pathol. 1999;9:369–91.

    CAS  PubMed  Google Scholar 

  8. Dyck PJ, Kratz KM, Karnes JL, et al. The prevalence by staged severity of various types of diabetic neuropathy, retinopathy, and nephropathy in a population-based cohort: the Rochester Diabetic Neuropathy Study. Neurology. 1993;43:817–24.

    CAS  PubMed  Google Scholar 

  9. Mulder DW, Lambert EH, Bastron JA, et al. The neuropathies associated with diabetes mellitus. Neurology. 1961;11:275–84.

    Google Scholar 

  10. Rundles RW. Diabetic neuropathy—general review with report of 125 cases. Medicine. 1945;24:111–60.

    Google Scholar 

  11. Cheng C, Guo GF, Martinez JA, et al. Dynamic plasticity of axons within a cutaneous milieu. J Neurosci. 2010;30:14735–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Zochodne DW. Diabetes mellitus and the peripheral nervous system: manifestations and mechanisms. Muscle Nerve. 2007;36:144–66.

    CAS  PubMed  Google Scholar 

  13. Anderson D, Zochodne DW. Current ideas on the treatment of diabetic neuropathies. Expert Rev Endocrinol Metab. 2016;11(2):187–05.

    CAS  PubMed  Google Scholar 

  14. Zochodne DW. Sensory neurodegeneration in diabetes: beyond glucotoxicity. Int Rev Neurobiol. 2016;127:151–80.

    CAS  PubMed  Google Scholar 

  15. Zochodne DW. Mechanisms of diabetic neuron damage: molecular pathways. Handb Clin Neurol. 2014;126:379–99.

    PubMed  Google Scholar 

  16. Zochodne DW. Diabetes and the plasticity of sensory neurons. Neurosci Lett. 2015;596:60–5.

    CAS  PubMed  Google Scholar 

  17. Scott JN, Clark AW, Zochodne DW. Neurofilament and tubulin gene expression in progressive experimental diabetes: failure of synthesis and export by sensory neurons. Brain. 1999;122:2109–18.

    PubMed  Google Scholar 

  18. Kennedy JM, Zochodne DW. Experimental diabetic neuropathy and spontaneous recovery: is there irreparable damage? Diabetes. 2005;54:830–7.

    CAS  PubMed  Google Scholar 

  19. Zochodne DW, Verge VMK, Cheng C, et al. Does diabetes target ganglion neurons? Progressive sensory neuron involvement in long term experimental diabetes. Brain. 2001;124:2319–34.

    CAS  PubMed  Google Scholar 

  20. Zochodne DW, Sun H-S, Cheng C, et al. Accelerated diabetic neuropathy in axons without neurofilaments. Brain. 2004;127:2193–200.

    PubMed  Google Scholar 

  21. Feldman EL, Callaghan BC, Pop-Busui R, et al. Diabetic neuropathy. Nat Rev Dis Primers. 2019;5:41.

    PubMed  Google Scholar 

  22. Kobayashi M, Zochodne DW. Diabetic polyneuropathy: bridging the translational gap. J Peripher Nerv Syst. 2020;25:66–75.

    CAS  PubMed  Google Scholar 

  23. Kobayashi M, Zochodne DW. Diabetic neuropathy and the sensory neuron: new aspects of pathogenesis and their treatment implications. J Diabetes Investig. 2018;9:1239–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Zochodne DW. The challenges of diabetic polyneuropathy: a brief update. Curr Opin Neurol. 2019;32:666–75.

    CAS  PubMed  Google Scholar 

  25. Zochodne DW. Is early diabetic neuropathy a disorder of the dorsal root ganglion? A hypothesis and critique of some current ideas on the etiology of diabetic neuropathy. J Peripher Nerv Syst. 1996;1:119–30.

    CAS  PubMed  Google Scholar 

  26. Zochodne DW. Nerve and ganglion blood flow in diabetes: an appraisal. In: Tomlinson D, editor. Neurobiology of diabetic neuropathy, vol. 50. San Diego: Academic Press; 2002. p. 161–202.

    Google Scholar 

  27. Kobayashi, M, Cheng, C, De La Hoz, C, et al. Diabetic neuropathy and the sensory neuron: new molecular targets. American Academy of Neurology Abstracts P2.010. 2015.

    Google Scholar 

  28. Adams WE. The blood supply of nerves. I. Historical review. J Anat. 1942;76:323–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Reinhold AK, Rittner H. Characteristics of the nerve barrier and the blood dorsal root ganglion barrier in health and disease. Exp Neurol. 2020;327:113244.

    CAS  PubMed  Google Scholar 

  30. Zochodne DW, Ho LT. Unique microvascular characteristics of the dorsal root ganglion in the rat. Brain Res. 1991;559:89–93.

    CAS  PubMed  Google Scholar 

  31. Arvidson B. Distribution of protein tracers in peripheral ganglia. A light and electron microscopic study in rodents after various modes of tracer administration. Acta Univ Ups. 1979;344:1–72.

    Google Scholar 

  32. Selvarajah D, Wilkinson ID, Emery CJ, et al. Early involvement of the spinal cord in diabetic peripheral neuropathy. Diabetes Care. 2006;29:2664–9.

    PubMed  Google Scholar 

  33. Jende JME, Kender Z, Rother C, et al. Diabetic polyneuropathy is associated with pathomorphological changes in human dorsal root ganglia: a study using 3T MR neurography. Front Neurosci. 2020;14:570744.

    PubMed  PubMed Central  Google Scholar 

  34. Willis WD, Coggeshall RE. Sensory mechanisms of the spinal cord. 3rd ed. New York: Kluwer Academic/Plenum; 2004.

    Google Scholar 

  35. Zochodne DW. Our wired nerves. The human nerve connectome. San Diego: Academic Press; 2020.

    Google Scholar 

  36. Zylka MJ, Rice FL, Anderson DJ. Topographically distinct epidermal nociceptive circuits revealed by axonal tracers targeted to Mrgprd. Neuron. 2005;45:17–25.

    CAS  PubMed  Google Scholar 

  37. Akkina SK, Patterson CL, Wright DE. Gdnf rescues nonpeptidergic unmyelinated primary afferents in streptozotocin-treated diabetic mice. Exp Neurol. 2001;167:173–82.

    CAS  PubMed  Google Scholar 

  38. Richardson PM, Verge VMK, Riopelle RJ. Quantitative radioautography for NGF receptors. In: Rush RA, editor. Nerve growth factors. Chichester: Wiley; 1989. p. 315–26.

    Google Scholar 

  39. Verge VMK, Riopelle RJ, Richardson PM. Nerve growth factor receptors on normal and injured sensory neurons. J Neurosci. 1989;9:914–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Funakoshi H, Frisen J, Barbany G, et al. Differential expression of mRNAs for neurotrophins and their receptors after axotomy of the sciatic nerve. J Cell Biol. 1993;123:455–65.

    CAS  PubMed  Google Scholar 

  41. Lieberman AR. The axon reaction: a review of the principal features of perikaryal responses to axon injury. Int Rev Neurobiol. 1971;14:49–124.

    CAS  PubMed  Google Scholar 

  42. Richardson PM, Verge VM. The induction of a regenerative propensity in sensory neurons following peripheral axonal injury. J Neurocytol. 1986;15:585–94.

    CAS  PubMed  Google Scholar 

  43. Verge VMK, Gratto KA, Karchewski LA, et al. Neurotrophins and nerve injury in the adult. Philos Trans R Soc Lond B Biol Sci. 1996;351:423–30.

    CAS  PubMed  Google Scholar 

  44. Chandran V, Coppola G, Nawabi H, et al. A systems-level analysis of the peripheral nerve intrinsic axonal growth program. Neuron. 2016;89:956–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Perlson E, Medzihradszky KF, Darula Z, et al. Differential proteomics reveals multiple components in retrogradely transported axoplasm after nerve injury. Mol Cell Proteomics. 2004;3:510–20.

    CAS  PubMed  Google Scholar 

  46. Krishnan A, Bhavanam S, Zochodne D. An intimate role for adult dorsal root ganglia resident cycling cells in the generation of local macrophages and satellite glial cells. J Neuropathol Exp Neurol. 2018;77:929–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Kalichman MW, Powell HC, Mizisin AP. Reactive, degenerative, and proliferative Schwann cell responses in experimental galactose and human diabetic neuropathy. Acta Neuropathol. 1998;95:47–56.

    CAS  PubMed  Google Scholar 

  48. Goncalves NP, Vaegter CB, Pallesen LT. Peripheral glial cells in the development of diabetic neuropathy. Front Neurol. 2018;9:268.

    PubMed  PubMed Central  Google Scholar 

  49. Gumy LF, Bampton ET, Tolkovsky AM. Hyperglycaemia inhibits Schwann cell proliferation and migration and restricts regeneration of axons and Schwann cells from adult murine DRG. Mol Cell Neurosci. 2008;37:298–311.

    CAS  PubMed  Google Scholar 

  50. Geuna S, Borrione P, Fornaro M, et al. Neurogenesis and stem cells in adult mammalian dorsal root ganglia. Anat Rec. 2000;261:139–40.

    CAS  PubMed  Google Scholar 

  51. Starita LM, Parvin JD. The multiple nuclear functions of BRCA1: transcription, ubiquitination and DNA repair. Curr Opin Cell Biol. 2003;15:345–50.

    CAS  PubMed  Google Scholar 

  52. Krishnan A, Purdy K, Chandrasekhar A, et al. A BRCA1-dependent DNA damage response in the regenerating adult peripheral nerve milieu. Mol Neurobiol. 2018;55(5):4051–67.

    CAS  PubMed  Google Scholar 

  53. Huang TJ, Price SA, Chilton L, et al. Insulin prevents depolarization of the mitochondrial inner membrane in sensory neurons of type 1 diabetic rats in the presence of sustained hyperglycemia. Diabetes. 2003;52:2129–36.

    CAS  PubMed  Google Scholar 

  54. Roy CS, Djordjevic J, Thomson E, et al. Depressed mitochondrial function and electron transport complex II-mediated H2O2 production in the cortex of type 1 diabetic rodents. Mol Cell Neurosci. 2018;90:49–59.

    Google Scholar 

  55. Kobayashi M, Chandrasekhar A, Cheng C, et al. Diabetic polyneuropathy, sensory neurons, nuclear structure and spliceosome alterations: a role for CWC22. Dis Model Mech. 2017;10:215–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Russell JW, Sullivan KA, Windebank AJ, et al. Neurons undergo apoptosis in animal and cell culture models of diabetes. Neurobiol Dis. 1999;6:347–63.

    CAS  PubMed  Google Scholar 

  57. Zochodne DW, Ho LT, Allison JA. Dorsal root ganglia microenvironment of female BB Wistar diabetic rats with mild neuropathy. J Neurol Sci. 1994;127:36–42.

    CAS  PubMed  Google Scholar 

  58. Zochodne DW, Ho LT. The influence of sulindac on experimental streptozotocin-induced diabetic neuropathy. Can J Neurol Sci. 1994;21:194–202.

    CAS  PubMed  Google Scholar 

  59. Zochodne DW, Nguyen C. Increased peripheral nerve microvessels in early experimental diabetic neuropathy: quantitative studies of nerve and dorsal root ganglia. J Neurol Sci. 1999;166:40–6.

    CAS  PubMed  Google Scholar 

  60. Ostergaard L, Finnerup NB, Terkelsen A, et al. The effects of capillary dysfunction on oxygen and glucose extraction in diabetic neuropathy. Diabetologia. 2015;58:666–77.

    PubMed  Google Scholar 

  61. Korngut L, Ma CH, Martinez JA, et al.Overexpression of human HSP27 protects sensory neurons from diabetes. Neurobiol Dis. 2012;47(3):436–43.

    Google Scholar 

  62. Zochodne DW, Ho LT, Gross PM. Acute endoneurial ischemia induced by epineurial endothelin in the rat sciatic nerve. Am J Physiol. 1992;263:H1806–10.

    CAS  PubMed  Google Scholar 

  63. Zochodne DW, Cheng C, Sun H. Diabetes increases sciatic nerve susceptibility to endothelin-induced ischemia. Diabetes. 1996;45:627–32.

    CAS  PubMed  Google Scholar 

  64. Zochodne DW, Cheng C. Diabetic peripheral nerves are susceptible to multifocal ischemic damage from endothelin. Brain Res. 1999;838:11–7.

    CAS  PubMed  Google Scholar 

  65. Zochodne DW, Ho LT. Diabetes mellitus prevents capsaicin from inducing hyperaemia in the rat sciatic nerve. Diabetologia. 1993;36:493–6.

    CAS  PubMed  Google Scholar 

  66. Thomsen K, Rubin I, Lauritzen M. NO- and non-NO-, non-prostanoid-dependent vasodilatation in rat sciatic nerve during maturation and developing experimental diabetic neuropathy. J Physiol. 2002;543:977–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Xu Q-G, Cheng C, Sun H, et al. Local sensory ganglion ischemia induced by endothelin vasoconstriction. Neuroscience. 2003;122:897–905.

    CAS  PubMed  Google Scholar 

  68. Greenbaum D, Richardson PC, Salmon MV, et al. Pathological observations on six cases of diabetic neuropathy. Brain. 1964;87:201–14.

    CAS  PubMed  Google Scholar 

  69. Li X-G, Zochodne DW. Microvacuolar neuronopathy is a post-mortem artifact of sensory neurons. J Neurocytol. 2003;32:393–8.

    CAS  PubMed  Google Scholar 

  70. Schmidt RE, Beaudet LN, Plurad SB, et al. Axonal cytoskeletal pathology in aged and diabetic human sympathetic autonomic ganglia. Brain Res. 1997;769:375–83.

    CAS  PubMed  Google Scholar 

  71. Toth C, Brussee V, Cheng C, et al. Diabetes mellitus and the sensory neuron. J Neuropathol Exp Neurol. 2004;63:561–73.

    CAS  PubMed  Google Scholar 

  72. Caselli A, Rich J, Hanane T, et al. Role of C-nociceptive fibers in the nerve axon reflex-related vasodilation in diabetes. Neurology. 2003;60:297–300.

    CAS  PubMed  Google Scholar 

  73. Cheng C, Kobayashi M, Martinez JA, et al. Evidence for epigenetic regulation of gene expression and function in chronic experimental diabetic neuropathy. J Neuropathol Exp Neurol. 2015;74:804–17.

    CAS  PubMed  Google Scholar 

  74. Price SA, Zeef LA, Wardleworth L, et al. Identification of changes in gene expression in dorsal root ganglia in diabetic neuropathy: correlation with functional deficits. J Neuropathol Exp Neurol. 2006;65:722–32.

    CAS  PubMed  Google Scholar 

  75. Price SA, Gardiner NJ, Duran-Jimenez B, et al. Thioredoxin interacting protein is increased in sensory neurons in experimental diabetes. Brain Res. 2006;1116(1):206–14.

    CAS  PubMed  Google Scholar 

  76. Chandrasekhar A, Komirishetty P, Areti A, et al. Dual specificity phosphatases support axon plasticity and viability. Mol Neurobiol. 2021;58:391–407.

    CAS  PubMed  Google Scholar 

  77. Cheng Y, Liu J, Luan Y, et al. Sarm1 gene deficiency attenuates diabetic peripheral neuropathy in mice. Diabetes. 2019;68:2120–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Gerdts J, Summers DW, Milbrandt J, et al. Axon self-destruction: new links among SARM1, MAPKs, and NAD+ metabolism. Neuron. 2016;89:449–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Woo V, Cheng C, Duraikannu A, et al. Caspase-6 is a dispensable enabler of adult mammalian axonal degeneration. Neuroscience. 2018;371:242–53.

    CAS  PubMed  Google Scholar 

  80. Mizisin AP, Powell HC. Schwann cell changes induced as early as one week after galactose intoxication. Acta Neuropathol. 1997;93:611–8.

    CAS  PubMed  Google Scholar 

  81. Borghini I, Ania-Lahuerta A, Regazzi R, et al. Alpha, beta I, beta II, delta, and epsilon protein kinase C isoforms and compound activity in the sciatic nerve of normal and diabetic rats. J Neurochem. 1994;62:686–96.

    CAS  PubMed  Google Scholar 

  82. Brett FM, Kalichman MW, Calcutt NA, et al. Effects of seven days of galactose feeding and aldose reductase inhibition on mast cells and vessel morphometry in rat sciatic nerve. J Neurol Sci. 1996;141:6–12.

    CAS  PubMed  Google Scholar 

  83. Greene DA, Lattimer SA, Sima AA. Sorbitol, phosphoinositides, and sodium-potassium-ATPase in the pathogenesis of diabetic complications. N Engl J Med. 1987;316:599–606.

    CAS  PubMed  Google Scholar 

  84. Gupta S, Sussman I, Mcarthur CS, et al. Endothelium-dependent inhibition of Na(+)-K+ AtPase activity in rabbit aorta by hyperglycemia. possible role of endothelium-derived nitric oxide. J Clin Invest. 1992;90:727–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Mizisin AP, Li L, Calcutt NA. Sorbitol accumulation and transmembrane efflux in osmotically stressed JS1 Schwannoma cells. Neurosci Lett. 1997;229:53–6.

    CAS  PubMed  Google Scholar 

  86. Roberts RE, Mclean WG. Protein kinase C isozyme expression in sciatic nerves and spinal cords of experimentally diabetic rats. Brain Res. 1997;754:147–56.

    CAS  PubMed  Google Scholar 

  87. Sima AAF, Brismar T, Yagihashi S. Neuropathies encountered in the spontaneously diabetic BB Wistar rat. In: Dyck PJ, Thomas PK, Asbury AK, et al., editors. Diabetic neuropathy. Toronto: W.B. Saunders; 1987.

    Google Scholar 

  88. Cherian PV, Kamijo M, Angelides KJ, et al. Nodal Na(+)-channel displacement is associated with nerve-conduction slowing in the chronically diabetic BB/W rat: prevention by aldose reductase inhibition. J Diabetes Complications. 1996;10:192–200.

    CAS  PubMed  Google Scholar 

  89. Ahlgren SC, Levine JD. Protein kinase C inhibitors decrease hyperalgesia and C-fiber hyperexcitability in the streptozotocin-diabetic rat. J Neurophysiol. 1994;72:684–92.

    CAS  PubMed  Google Scholar 

  90. Ishii H, Jirousek MR, Koya D, et al. Amelioration of vascular dysfunctions in diabetic rats by an oral PKC beta inhibitor. Science. 1996;272:728–31.

    CAS  PubMed  Google Scholar 

  91. Judzewitsch RG, Jaspan JB, Polonsky KS, et al. Aldose reductase inhibition improves nerve conduction velocity in diabetic patients. N Engl J Med. 1983;308:119–25.

    CAS  PubMed  Google Scholar 

  92. Mizisin AP, Powell HC, Myers RR. Edema and increased endoneurial sodium in galactose neuropathy. reversal with an aldose reductase inhibitor. J Neurol Sci. 1986;74:35–43.

    CAS  PubMed  Google Scholar 

  93. Schmidt RE, Plurad SB, Sherman WR, et al. Effects of aldose reductase inhibitor sorbinil on neuroaxonal dystrophy and levels of myo-inositol and sorbital in symapthetic autonomic ganglia of streptozotocin-induced diabetic rats. Diabetes. 1989;38:569–79.

    CAS  PubMed  Google Scholar 

  94. Sima AA, Bril V, Nathaniel V, et al. Regeneration and repair of myelinated fibers in sural-nerve biopsy specimens from patients with diabetic neuropathy treated with sorbinil. N Engl J Med. 1988;319:548–55.

    CAS  PubMed  Google Scholar 

  95. Zenon GJ, Abobo CV, Carter BL, et al. Potential use of aldose reductase inhibitors to prevent diabetic complications. Clin Pharm. 1990;9:446–57.

    PubMed  Google Scholar 

  96. Zherebitskaya E, Akude E, Smith DR, et al. Development of selective axonopathy in adult sensory neurons isolated from diabetic rats: role of glucose-induced oxidative stress. Diabetes. 2009;58:1356–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Fernyhough P, Gallagher A, Averill SA, et al. Duplicate use 14199 aberrant neurofilament phosphorylation in sensory neurons of rats with diabetic neuropathy. Diabetes. 1999;48:881–9.

    CAS  PubMed  Google Scholar 

  98. Huang TJ, Sayers NM, Verkhratsky A, et al. Neurotrophin-3 prevents mitochondrial dysfunction in sensory neurons of streptozotocin-diabetic rats. Exp Neurol. 2005;194:279–83.

    CAS  PubMed  Google Scholar 

  99. Low PA, Nickander KK, Tritschler HJ. The roles of oxidative stress and antioxidant treatment in experimental diabetic neuropathy. Diabetes. 1997;46:S38–42.

    CAS  PubMed  Google Scholar 

  100. Ceriello A, Giugliano D. Oxidative stress and diabetic complications. In: Alberti KGGM, Zimmet P, Defronzo RA, et al., editors. International textbook of diabetes mellitus. Chichester, New York: Wiley; 1997. p. 1453–61.

    Google Scholar 

  101. Lyons TJ, Jenkins AJ. Glycation, oxidation, and lipoxidation in the development of the complications of diabetes: a carbonyl stress hypothesis. Diabetes Rev. 1997;5:365–91.

    Google Scholar 

  102. Zalba G, Beaumont J, San Jose G, et al. Vascular oxidant stress: molecular mechanisms and pathophysiological implications. J Physiol Biochem. 2000;56:57–64.

    CAS  PubMed  Google Scholar 

  103. Oates PJ. Polyol pathway and diabetic peripheral neuropathy. Int Rev Neurobiol. 2002;50:325–92.

    CAS  PubMed  Google Scholar 

  104. Chalk C, Benstead TJ, Moore F. Aldose reductase inhibitors for the treatment of diabetic polyneuropathy. Cochrane Database Syst Rev. 2007;2007:Cd004572.

    PubMed  PubMed Central  Google Scholar 

  105. Apfel SC, Schwartz S, Adornato BT, et al. Efficacy and safety of recombinant human nerve growth factor in patients with diabetic polyneuropathy: a randomized controlled trial. rhNGF Clinical Investigator Group. JAMA. 2000;284:2215–21.

    CAS  PubMed  Google Scholar 

  106. Kessler JA, Smith AG, Cha BS, et al. Double-blind, placebo-controlled study of HGF gene therapy in diabetic neuropathy. Ann Clin Transl Neurol. 2015;2:465–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Frazier WA, Angeletti RH, Bradshaw RA. Nerve growth factor and insulin. Science. 1972;176:482–8.

    CAS  PubMed  Google Scholar 

  108. Ishii DN. Implication of insulin-like growth factors in the pathogenesis of diabetic neuropathy. Brain Res Brain Res Rev. 1995;20:47–67.

    CAS  PubMed  Google Scholar 

  109. Ishii DN. Insulin and related neurotrophic factors in diabetic neuropathy. Diabet Med. 1993;10:14s–5s.

    PubMed  Google Scholar 

  110. Sugimoto K, Murakawa Y, Zhang W, et al. Insulin receptor in rat peripheral nerve: its localization and alternatively spliced isoforms. Diabetes Metab Res Rev. 2000;16:354–63.

    CAS  PubMed  Google Scholar 

  111. Sugimoto K, Murakawa Y, Sima AA. Expression and localization of insulin receptor in rat dorsal root ganglion and spinal cord. J Peripher Nerv Syst. 2002;7:44–53.

    CAS  PubMed  Google Scholar 

  112. Fernyhough P, Mill JF, Roberts JL, et al. Stabilization of tubulin mRNAs by insulin and insulin-like growth factor I during neurite formation. Brain Res Mol Brain Res. 1989;6:109–20.

    CAS  PubMed  Google Scholar 

  113. Chiu SL, Chen CM, Cline HT. Insulin receptor signaling regulates synapse number, dendritic plasticity, and circuit function in vivo. Neuron. 2008;58:708–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Havrankova J, Roth J, Brownstein M. Insulin receptors are widely distributed in the central nervous system of the rat. Nature. 1978;272:827–9.

    CAS  PubMed  Google Scholar 

  115. Karagiannis SN, King RH, Thomas PK. Colocalisation of insulin and IGF-1 receptors in cultured rat sensory and sympathetic ganglion cells. J Anat. 1997;191:431–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Brussee V, Cunningham A, Zochodne DW. Direct insulin signalling of neurons reverses diabetic neuropathy. Diabetes. 2004;53:1824–30.

    CAS  PubMed  Google Scholar 

  117. Xu Q-G, Li X-Q, Kotecha SA, et al. Insulin as an in vivo growth factor. Exp Neurol. 2004;188:43–51.

    Google Scholar 

  118. White MF. The insulin signalling system and the IRS proteins. Diabetologia. 1997;40:S2–17.

    CAS  PubMed  Google Scholar 

  119. Thirone AC, Huang C, Klip A. Tissue-specific roles of IRS proteins in insulin signaling and glucose transport. Trends Endocrinol Metab. 2006;17:72–8.

    PubMed  Google Scholar 

  120. Heidenreich KA. Insulin and IGF-I receptor signaling in cultured neurons. Ann N Y Acad Sci. 1993;692:72–88.

    CAS  PubMed  Google Scholar 

  121. Fadool DA, Tucker K, Phillips JJ, et al. Brain insulin receptor causes activity-dependent current suppression in the olfactory bulb through multiple phosphorylation of Kv1.3. J Neurophysiol. 2000;83:2332–48.

    CAS  PubMed  Google Scholar 

  122. Folli F, Bonfanti L, Renard E, et al. Insulin receptor substrate-1 (IRS-1) distribution in the rat central nervous system. J Neurosci. 1994;14:6412–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Edstrom A, Ekstrom PA. Role of phosphatidylinositol 3-kinase in neuronal survival and axonal outgrowth of adult mouse dorsal root ganglia explants. J Neurosci Res. 2003;74:726–35.

    PubMed  Google Scholar 

  124. Brunet A, Datta SR, Greenberg ME. Transcription-dependent and -independent control of neuronal survival by the PI3K-Akt signaling pathway. Curr Opin Neurobiol. 2001;11:297–305.

    CAS  PubMed  Google Scholar 

  125. Namikawa K, Honma M, Abe K, et al. Akt/protein kinase B prevents injury-induced motoneuron death and accelerates axonal regeneration. J Neurosci. 2000;20:2875–86.

    Google Scholar 

  126. Franke TF, Hornik CP, Segev L, et al. PI3K/Akt and apoptosis: size matters. Oncogene. 2003;22:8983–98.

    CAS  PubMed  Google Scholar 

  127. Hanada M, Feng J, Hemmings BA. Structure, regulation and function of PKB/Akt—a major therapeutic target. Biochim Biophys Acta. 2004;1697:3–16.

    CAS  PubMed  Google Scholar 

  128. Fernyhough P, Willars GB, Lindsay RM, et al. Insulin and insulin-like growth factor I enhance regeneration in cultured adult rat sensory neurones. Brain Res. 1993;607:117–24.

    CAS  PubMed  Google Scholar 

  129. Toth C, Brussee V, Martinez JA, et al. Rescue and regeneration of injured peripheral nerve axons by intrathecal insulin. Neuroscience. 2006;139:429–49.

    CAS  PubMed  Google Scholar 

  130. Brussee V, Cunningham FA, Zochodne DW. Direct insulin signaling of neurons reverses diabetic neuropathy. Diabetes. 2004;53:1824–30.

    CAS  PubMed  Google Scholar 

  131. Singhal A, Cheng C, Sun H, et al. Near nerve local insulin prevents conduction slowing in experimental diabetes. Brain Res. 1997;763:209–14.

    CAS  PubMed  Google Scholar 

  132. Guo G, Kan M, Martinez JA, et al. Local insulin and the rapid regrowth of diabetic epidermal axons. Neurobiol Dis. 2011;43:414–21.

    CAS  PubMed  Google Scholar 

  133. Toth C, Brussee V, Zochodne DW. Remote neurotrophic support of epidermal nerve fibres in experimental diabetes. Diabetologia. 2006;49:1081–8.

    CAS  PubMed  Google Scholar 

  134. De La Hoz CL, Cheng C, Fernyhough P, et al. A model of chronic diabetic polyneuropathy: benefits from intranasal insulin are modified by sex and RAGE deletion. Am J Physiol Endocrinol Metab. 2017;312(5):E407–19.

    PubMed  PubMed Central  Google Scholar 

  135. Francis GJ, Martinez JA, Liu WQ, et al. Motor end plate innervation loss in diabetes and the role of insulin. J Neuropathol Exp Neurol. 2011;70:323–39.

    CAS  PubMed  Google Scholar 

  136. Chen DK, Frizzi KE, Guernsey LS, et al. Repeated monitoring of corneal nerves by confocal microscopy as an index of peripheral neuropathy in type-1 diabetic rodents and the effects of topical insulin. J Peripher Nerv Syst. 2013;18:306–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Cheng HL, Randolph A, Yee D, et al. Characterization of insulin-like growth factor-I and its receptor and binding proteins in transected nerves and cultured Schwann cells. J Neurochem. 1996;66:525–36.

    CAS  PubMed  Google Scholar 

  138. Zochodne DW, Cheng C. Neurotrophins and other growth factors in the regenerative milieu of proximal nerve stump tips. J Anat. 2000;196:279–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Cheng HL, Russell JW, Feldman EL. IGF-I promotes peripheral nervous system myelination. Ann N Y Acad Sci. 1999;883:124–30.

    CAS  PubMed  Google Scholar 

  140. Morino K, Petersen KF, Shulman GI. Molecular mechanisms of insulin resistance in humans and their potential links with mitochondrial dysfunction. Diabetes. 2006;55(Suppl 2):S9–S15.

    CAS  PubMed  Google Scholar 

  141. Zeggini E, Parkinson J, Halford S, et al. Association studies of insulin receptor substrate 1 gene (IRS1) variants in type 2 diabetes samples enriched for family history and early age of onset. Diabetes. 2004;53:3319–22.

    CAS  PubMed  Google Scholar 

  142. Esposito DL, Li Y, Vanni C, et al. A novel T608R missense mutation in insulin receptor substrate-1 identified in a subject with type 2 diabetes impairs metabolic insulin signaling. J Clin Endocrinol Metab. 2003;88:1468–75.

    CAS  PubMed  Google Scholar 

  143. Imoto K, Kukidome D, Nishikawa T, et al. Impact of mitochondrial reactive oxygen species and apoptosis signal-regulating kinase 1 on insulin signaling. Diabetes. 2006;55:1197–204.

    CAS  PubMed  Google Scholar 

  144. Singh B, Xu Y, Guo GF, et al. Insulin signaling and insulin resistance in sensory neurons. J Peripher Nerv Syst. 2009;13:254.

    Google Scholar 

  145. Singh B, Xu Y, McLaughlin T, et al. Resistance to trophic neurite outgrowth of sensory neurons exposed to insulin. J Neurochem. 2012;121(2):263–76.

    Google Scholar 

  146. Kim B, Mclean LL, Philip SS, et al. Hyperinsulinemia induces insulin resistance in dorsal root ganglion neurons. Endocrinology. 2011;152:3638–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Grote CW, Morris JK, Ryals JM, et al. Insulin receptor substrate 2 expression and involvement in neuronal insulin resistance in diabetic neuropathy. Exp Diabetes Res. 2011;2011:212571.

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Kan M, Guo G, Singh B, et al. Glucagon-like peptide 1, insulin, sensory neurons, and diabetic neuropathy. J Neuropathol Exp Neurol. 2012;71:494–510.

    CAS  PubMed  Google Scholar 

  149. Himeno T, Kamiya H, Naruse K, et al. Beneficial effects of exendin-4 on experimental polyneuropathy in diabetic mice. Diabetes. 2011;60:2397–406.

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Jolivalt CG, Fineman M, Deacon CF, et al. GLP-1 signals via ERK in peripheral nerve and prevents nerve dysfunction in diabetic mice. Diabetes Obes Metab. 2011;13:990–1000.

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Bautista J, Chandrasekhar A, Komirishetty PK, et al. Regenerative plasticity of intact human skin axons. J Neurol Sci. 2020;417:117058.

    CAS  PubMed  Google Scholar 

  152. Senger JB, Verge VMK, Chan KM, et al. The nerve conditioning lesion: a strategy to enhance nerve regeneration. Ann Neurol. 2018;83:691–702.

    PubMed  Google Scholar 

  153. Brushart TM, Hoffman PN, Royall RM, et al. Electrical stimulation promotes motoneuron regeneration without increasing its speed or conditioning the neuron. J Neurosci. 2002;22:6631–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Al-Majed AA, Neumann CM, Brushart TM, et al. Brief electrical stimulation promotes the speed and accuracy of motor axonal regeneration. J Neurosci. 2000;20:2602–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Brushart TM, Jari R, Verge V, et al. Electrical stimulation restores the specificity of sensory axon regeneration. Exp Neurol. 2005;194:221–9.

    PubMed  Google Scholar 

  156. Geremia NM, Gordon T, Brushart TM, et al. Electrical stimulation promotes sensory neuron regeneration and growth-associated gene expression. Exp Neurol. 2007;205:347–59.

    CAS  PubMed  Google Scholar 

  157. Singh B, Xu QG, Franz CK, et al. Accelerated axon outgrowth, guidance, and target reinnervation across nerve transection gaps following a brief electrical stimulation paradigm. J Neurosurg. 2012;116:512.

    Google Scholar 

  158. Singh B, Krishnan A, Micu I, et al. Peripheral neuron plasticity is enhanced by brief electrical stimulation and overrides attenuated regrowth in experimental diabetes. Neurobiol Dis. 2015;83:134–51.

    CAS  PubMed  Google Scholar 

  159. Geremia NM, Pettersson LM, Hasmatali JC, et al. Endogenous BDNF regulates induction of intrinsic neuronal growth programs in injured sensory neurons. Exp Neurol. 2010;223:128–42.

    CAS  PubMed  Google Scholar 

  160. Kennedy JM, Zochodne DW. The regenerative deficit of peripheral nerves in experimental diabetes: its extent, timing and possible mechanisms. Brain. 2000;123:2118–29.

    Google Scholar 

  161. Christie KJ, Webber CA, Martinez JA, et al. PTEN inhibition to facilitate intrinsic regenerative outgrowth of adult peripheral axons. J Neurosci. 2010;30:9306–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Tucker BA, Rahimtula M, Mearow KM. Laminin and growth factor receptor activation stimulates differential growth responses in subpopulations of adult DRG neurons. Eur J Neurosci. 2006;24:676–90.

    PubMed  Google Scholar 

  163. Singh B, Singh V, Krishnan A, et al. Regeneration of diabetic axons is enhanced by selective knockdown of the PTEN gene. Brain. 2014;137:1051–67.

    PubMed  PubMed Central  Google Scholar 

  164. Pham VM, Tu NH, Katano T, et al. Impaired peripheral nerve regeneration in type-2 diabetic mouse model. Eur J Neurosci. 2018;47:126–39.

    PubMed  Google Scholar 

  165. Christie KJ, Krishnan A, Martinez JA, et al. Enhancing adult nerve regeneration through the knockdown of retinoblastoma protein. Nat Commun. 2014;5:3670.

    CAS  PubMed  Google Scholar 

  166. Futatsugi A, Utreras E, Rudrabhatla P, et al. Cyclin-dependent kinase 5 regulates E2F transcription factor through phosphorylation of Rb protein in neurons. Cell Cycle. 2012;11:1603–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Dimova DK, Dyson NJ. The E2F transcriptional network: old acquaintances with new faces. Oncogene. 2005;24:2810–26.

    CAS  PubMed  Google Scholar 

  168. Dick FA, Rubin SM. Molecular mechanisms underlying Rb protein function. Nat Rev Mol Cell Biol. 2013;14:297–306.

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Abe N, And Cavalli V. Nerve injury signaling. Curr Opin Neurobiol. 2008;18:276–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Jones DM, Tucker BA, Rahimtula M, et al. The synergistic effects of NGF and IGF-1 on neurite growth in adult sensory neurons: convergence on the PI 3-kinase signaling pathway. J Neurochem. 2003;86:1116–28.

    CAS  PubMed  Google Scholar 

  171. Park KK, Liu K, Hu Y, et al. Promoting axon regeneration in the adult CNS by modulation of the PTEN/mTOR pathway. Science. 2008;322:963–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Culman J, Zhao Y, Gohlke P, et al. PPAR-gamma: therapeutic target for ischemic stroke. Trends Pharmacol Sci. 2007;28:244–9.

    CAS  PubMed  Google Scholar 

  173. Bordet R, Ouk T, Petrault O, et al. PPAR: a new pharmacological target for neuroprotection in stroke and neurodegenerative diseases. Biochem Soc Trans. 2006;34:1341–6.

    CAS  PubMed  Google Scholar 

  174. Iwata M, Haruta T, Usui I, et al. Pioglitazone ameliorates tumor necrosis factor-alpha-induced insulin resistance by a mechanism independent of adipogenic activity of peroxisome proliferator—activated receptor-gamma. Diabetes. 2001;50:1083–92.

    CAS  PubMed  Google Scholar 

  175. Smith U. Pioglitazone: mechanism of action. Int J Clin Pract Suppl. 2001;13–18.

    Google Scholar 

  176. Rieusset J, Auwerx J, Vidal H. Regulation of gene expression by activation of the peroxisome proliferator-activated receptor gamma with rosiglitazone (BRL 49653) in human adipocytes. Biochem Biophys Res Commun. 1999;265:265–71.

    CAS  PubMed  Google Scholar 

  177. Ribon V, Johnson JH, Camp HS, et al. Thiazolidinediones and insulin resistance: peroxisome proliferatoractivated receptor gamma activation stimulates expression of the CAP gene. Proc Natl Acad Sci U S A. 1998;95:14751–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Baumann CA, Chokshi N, Saltiel AR, et al. cloning and characterization of a functional peroxisome proliferator activator receptor-gamma-responsive element in the promoter of the CAP gene. J Biol Chem. 2000;275:9131–5.

    CAS  PubMed  Google Scholar 

  179. Duraikannu A, Martinez JA, Chandrasekhar A, et al. expression and manipulation of the APC-beta-catenin pathway during peripheral neuron regeneration. Sci Rep. 2018;8:13197.

    PubMed  PubMed Central  Google Scholar 

  180. Chitwood DH, Timmermans MC. Small RNAs are on the move. Nature. 2010;467:415–9.

    CAS  PubMed  Google Scholar 

  181. Chen YY, Mcdonald D, Cheng C, et al. Axon and Schwann cell partnership during nerve regrowth. J Neuropathol Exp Neurol. 2005;64:613–22.

    PubMed  Google Scholar 

  182. Webber CA, Christie KJ, Cheng C, et al. Schwann cells direct peripheral nerve regeneration through the Netrin-1 receptors, DCC and Unc5H2. Glia. 2011;59:1503–17.

    PubMed  Google Scholar 

  183. Verma P, Chierzi S, Codd AM, et al. Axonal protein synthesis and degradation are necessary for efficient growth cone regeneration. J Neurosci. 2005;25:331–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Willis DE, Twiss JL. The evolving roles of axonally synthesized proteins in regeneration. Curr Opin Neurobiol. 2006;16:111–8.

    CAS  PubMed  Google Scholar 

  185. Zochodne DW, Allison JA, Ho W, et al. Evidence for CGRP accumulation and activity in experimental neuromas. Am J Physiol. 1995;268:H584–90.

    CAS  PubMed  Google Scholar 

  186. Toth CC, Willis D, Twiss JL, et al. Locally synthesized calcitonin gene-related peptide has a critical role in peripheral nerve regeneration. J Neuropathol Exp Neurol. 2009;68:326–37.

    CAS  PubMed  Google Scholar 

  187. Cheng C, Webber CA, Wang J, et al. Activated RHOA and peripheral axon regeneration. Exp Neurol. 2008;212:358–69.

    CAS  PubMed  Google Scholar 

  188. Calcutt NA, Smith DR, Frizzi K, et al. Selective antagonism of muscarinic receptors is neuroprotective in peripheral neuropathy. J Clin Invest. 2017;127:608–22.

    PubMed  PubMed Central  Google Scholar 

  189. Saleh A, Sabbir MG, Aghanoori MR, et al. Muscarinic toxin 7 signals via Ca(2+)/calmodulin-dependent protein kinase kinase beta to augment mitochondrial function and prevent neurodegeneration. Mol Neurobiol. 2020;57:2521–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Jolivalt CG, Frizzi KE, Han MM, et al. Topical delivery of muscarinic receptor antagonists prevents and reverses peripheral neuropathy in female diabetic mice. J Pharmacol Exp Ther. 2020;374:44–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Lee-Kubli CA, Calcutt NA. Painful neuropathy: mechanisms. Handb Clin Neurol. 2014;126:533–57.

    PubMed  Google Scholar 

  192. Greig M, Tesfaye S, Selvarajah D, et al. Insights into the pathogenesis and treatment of painful diabetic neuropathy. Handb Clin Neurol. 2014;126:559–78.

    PubMed  Google Scholar 

  193. Wall PD, Devor M. Sensory afferent impulses originate from dorsal root ganglia as well as from the periphery in normal and nerve injured rats. Pain. 1983;17:321–39.

    CAS  PubMed  Google Scholar 

  194. Faber CG, Hoeijmakers JG, Ahn HS, et al. Gain of function Na(V) 1.7 mutations in idiopathic small fiber neuropathy. Ann Neurol. 2012;71:26–39.

    CAS  PubMed  Google Scholar 

  195. Lauria G, Ziegler D, Malik R, et al. The role of sodium channels in painful diabetic and idiopathic neuropathy. Curr Diab Rep. 2014;14:538.

    PubMed  Google Scholar 

  196. Bierhaus A, Fleming T, Stoyanov S, et al. Methylglyoxal modification of Nav1.8 facilitates nociceptive neuron firing and causes hyperalgesia in diabetic neuropathy. Nat Med. 2012;18:926–33.

    CAS  PubMed  Google Scholar 

  197. Shah BS, Gonzalez MI, Bramwell S, et al. Beta3, a novel auxiliary subunit for the voltage gated sodium channel is upregulated in sensory neurones following streptozocin induced diabetic neuropathy in rat. Neurosci Lett. 2001;309:1–4.

    CAS  PubMed  Google Scholar 

  198. Alsaloum M, Estacion M, Almomani R, et al. A gain-of-function sodium channel beta2-subunit mutation in painful diabetic neuropathy. Mol Pain. 2019;15:1744806919849802.

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Todorovic SM, Lingle CJ. Pharmacological properties of T-type Ca2+ current in adult rat sensory neurons: effects of anticonvulsant and anesthetic agents. J Neurophysiol. 1998;79:240–52.

    CAS  PubMed  Google Scholar 

  200. Latham JR, Pathirathna S, Jagodic MM, et al. Selective T-type calcium channel blockade alleviates hyperalgesia in ob/ob mice. Diabetes. 2009;58:2656–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Todorovic SM, Jevtovic-Todorovic V. Targeting of Cav3.2 T-type calcium channels in peripheral sensory neurons for the treatment of painful diabetic neuropathy. Pflugers Arch. 2014;466:701–6.

    CAS  PubMed  Google Scholar 

  202. Orestes P, Osuru HP, Mcintire WE, et al. Reversal of neuropathic pain in diabetes by targeting glycosylation of Ca(V)3.2 T-type calcium channels. Diabetes. 2013;62:3828–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Tsantoulas C, Lainez S, Wong S, et al. Hyperpolarization-activated cyclic nucleotide-gated 2 (HCN2) ion channels drive pain in mouse models of diabetic neuropathy. Sci Transl Med. 2017;9:Eaam6072.

    PubMed  PubMed Central  Google Scholar 

  204. Zenker J, Poirot O, De Preux Charles AS, et al. Altered distribution of juxtaparanodal Kv1.2 subunits mediates peripheral nerve hyperexcitability in type 2 diabetes mellitus. J Neurosci. 2012;32:7493–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Andersson DA, Gentry C, Light E, et al. Methylglyoxal evokes pain by stimulating TRPA1. PLos One. 2013;8:E77986.

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Dull MM, Riegel K, Tappenbeck J, et al. Methylglyoxal causes pain and hyperalgesia in human through C-fiber activation. Pain. 2019;160:2497–507.

    PubMed  Google Scholar 

  207. Chowdhury SK, Smith DR, Fernyhough P. The role of aberrant mitochondrial bioenergetics in diabetic neuropathy. Neurobiol Dis. 2013;51:56–65.

    CAS  PubMed  Google Scholar 

  208. Brussee V, Guo GF, Dong YY, et al. Distal degenerative sensory neuropathy in a long term type 2 diabetes rat model. Diabetes. 2008;57:1664–73.

    CAS  PubMed  Google Scholar 

  209. Zochodne DW, Verge VM, Cheng C, et al. Nitric oxide synthase activity and expression in experimental diabetic neuropathy. J Neuropathol Exp Neurol. 2000;59:798–807.

    CAS  PubMed  Google Scholar 

  210. Cheng C, Zochodne DW. Sensory neurons with activated caspase-3 survive long-term experimental diabetes. Diabetes. 2003;52:2363–71.

    CAS  PubMed  Google Scholar 

  211. Zochodne DW, Ho LT. The influence of indomethacin and guanethidine on experimental streptozotocin diabetic neuropathy. Can J Neurol Sci. 1992;19:433–41.

    CAS  PubMed  Google Scholar 

  212. Van Der Sloot P, Mizisin A, Zochodne DW. Sulindac in established experimental diabetes: a follow-up study. Can J Neurol Sci. 1995;22(3):198–201.

    PubMed  Google Scholar 

Download references

Acknowledgments

The effort devoted to this chapter was supported by current operating grants from the Canadian Institutes of Health Research (FRN148675 and 168929). The authors acknowledge the experimental work cited here and contributions by colleagues and trainees in the Zochodne laboratory. Work described has been supported since 1989 by the Canadian Institutes of Health Research, Canadian Diabetes Association, the Alberta Heritage Foundation for Medical Research, Muscular Dystrophy Association of Canada, University of Alberta Hospital Foundation, Department of Medicine and Division of Neurology, University of Alberta, NIDDK Complications Consortium, and the Juvenile Diabetes Foundation.

Disclosures

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas W. Zochodne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Areti, A., Zochodne, D.W. (2023). Diabetic Sensory Neurons, Dorsal Root Ganglia, and Neuropathy. In: Tesfaye, S., Gibbons, C.H., Malik, R.A., Veves, A. (eds) Diabetic Neuropathy. Contemporary Diabetes. Humana, Cham. https://doi.org/10.1007/978-3-031-15613-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15613-7_18

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-031-15612-0

  • Online ISBN: 978-3-031-15613-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics